Massachusetts Institute of Technology Department of Electrical Engineering \& Computer Science

 6.041/6.431: Probabilistic Systems Analysis

 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

Recitation 07
 March 07, 2006

1. See solutions for supplementary problems, Problem 2, Section 3.1
2. See online solutions for supplementary problems (Problem 4, Section 3.2)
3. (a) Let Z be the random variable representing the additive zero-mean Gaussian noise; that is, $Z \sim N\left(0, \sigma^{2}\right)$. Let S_{0} be the event that -1 is sent and S_{1} be the event that +1 is sent. Let R_{0} be the event that we conclude that an encoded signal of -1 was sent based on the received value being less than a. Let R_{1} be the event that we conclude that an encoded signal of +1 was sent based on the received value being greater than a.
There are two ways for errors to occur. The true encoded signal could be -1 but we could conclude that the encoded signal of +1 was sent. Conditioned on the true encoded signal being -1 , the received signal is $Z-1$; we would erroneously conclude that the encoded signal of +1 was sent if $Z-1>a$. Similarly, the true encoded signal could be +1 but we could conclude that the encoded signal of -1 was sent. In this case, conditioned on the true encoded signal being +1 , the received signal is $Z+1$ and we would erroneously conclude that the true signal was -1 if $Z+1<a$.
The figure below illustrates the situations under which errors can occur.

Let Φ such that

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t .
$$

Therefore

$$
\begin{aligned}
\mathbf{P}(\mathrm{error}) & =\mathbf{P}\left(R_{1} \mid S_{0}\right) \mathbf{P}\left(S_{0}\right)+\mathbf{P}\left(R_{0} \mid S_{1}\right) \mathbf{P}\left(S_{1}\right) \\
& =\mathbf{P}(Z-1>a)(p)+\mathbf{P}(Z+1<a)(1-p) \\
& =p \cdot\left(1-\Phi\left(\frac{a-(-1)}{\sigma}\right)\right)+(1-p) \cdot \Phi\left(\frac{a-1}{\sigma}\right) \\
& =p-p \cdot \Phi\left(\frac{a+1}{\sigma}\right)+(1-p) \cdot\left(1-\Phi\left(\frac{1-a}{\sigma}\right)\right) \\
& =1-p \cdot \Phi\left(\frac{a+1}{\sigma}\right)-(1-p) \cdot \Phi\left(\frac{1-a}{\sigma}\right)
\end{aligned}
$$

(b) $\mathbf{P}($ error $)=1-0.4 \cdot \Phi\left(\frac{3 / 2}{1 / 2}\right)-0.6 \cdot \Phi\left(\frac{1 / 2}{1 / 2}\right)$

