Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

 (Spring 2006)
Recitation 08 Solutions
 March 09, 2006

1. In order to solve this problem, it is useful to begin by deriving the marginal distributions $f_{X}(x)$ and $f_{Y}(y)$. The marginal distributions are obtained by integrating the joint distribution along the X and Y axes and is shown in the following figure.

Figure 1: Marginal probabilities $f_{X}(x)$ and $f_{Y}(y)$ obtained by integration along the y and x axes respectively
(a) The conditional PDF $f_{Y \mid X}(y \mid x)$ is given by

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

A good way to visualize the conditional $\operatorname{PDF} f_{Y \mid X}(y \mid x)$ is to imagine a vertical slice of the joint PDF at $X=x$. Essentially, the conditional PDF has the same shape as the joint PDF except for a scaling factor $f_{X}(x)$ which ensures that,

$$
\int f_{Y \mid X}(y \mid x) d y=1
$$

Similarly the conditional PDF $f_{X \mid Y}(x \mid y)$ is obtained using,

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X Y}(x, y)}{f_{Y}(y)}
$$

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)

Figure 2: Marginal probabilities $f_{X}(x)$ and $f_{Y}(y)$ obtained by integration along the y and x axes respectively

To visualize $f_{X \mid Y}(x \mid y)$, imagine a horizontal slice through the joint PDF at $Y=y$. Again, the conditional PDF has the same shape except for the scaling factor of $f_{y}\left(y_{0}\right)$. The conditional PDFs are as shown in the figure below.
(b) X and Y are NOT indepenent since $f_{X Y}(x, y) \neq f_{X}(x) f_{Y}(y)$. Also, from the figures we have $f_{X \mid Y}(x \mid y) \neq f_{X}(x)$ and $f_{Y \mid X}(y \mid x) \neq f_{Y}(y)$.
(c)

$$
\begin{aligned}
f_{X Y}(x, y \mid A) & =\frac{f_{X Y}((x, y) \cap(x, y) \in A)}{\mathbf{P}(A)} \\
& =\left\{\begin{array}{ll}
\frac{0.1}{0.1 \pi} & (x, y) \in A \\
0 & \text { otherwise }
\end{array}\right\}
\end{aligned}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
(d) It can be seen that $f_{X \mid Y}(x \mid y)$ is a uniform density for each value of y . Noting the fact that the expected value of a random variable distributed uniformly between a and b is given by $\frac{(a+b)}{2}$, the conditional expected values can be written as

$$
\mathbf{E}[X \mid Y]=\left\{\begin{array}{ll}
0 & -2.0 \leq Y \leq-1.0 \\
\frac{1}{2} & -1.0 \leq Y \leq 1.0 \\
0 & 1.0 \leq Y \leq 2.0
\end{array}\right\}
$$

Again, noting the fact that the variance of a random variable distributed uniformly between a and b is given by $\frac{(b-a)^{2}}{12}$, the conditional variance $\sigma_{X \mid Y}^{2}$ is given by

$$
\sigma_{X \mid Y}^{2}=\left\{\begin{array}{ll}
\frac{4}{12} & -2.0 \leq Y \leq-1.0 \\
\frac{9}{12} & -1.0 \leq Y \leq 1.0 \\
\frac{4}{12} & 1.0 \leq Y \leq 2.0
\end{array}\right\}
$$

The expected value $\mathbf{E}[X]$ can be obtained by averaging the conditional mean over y.

$$
\begin{aligned}
\mathbf{E}[x]=\mathbf{E}[\mathbf{E}[x \mid y]] & =(0.0) \mathbf{P}(-2 \leq Y \leq-1)+(0.5) \mathbf{P}(-1 \leq Y \leq 1)+(0.0) \mathbf{P}(1 \leq Y \leq 2) \\
& =(0.5)(0.6)=0.3
\end{aligned}
$$

(e) The conditional expected value $\mathbf{E}[Y \mid X]$ and the conditional variance $\sigma_{Y \mid X}$ is computed in a similar fashion

$$
\begin{aligned}
& \mathbf{E}[Y \mid X]=\left\{\begin{array}{ll}
0 & -1.0 \leq X \leq 1 \\
0 & 1.0 \leq X \leq 2.0
\end{array}\right\} \\
& \sigma_{Y \mid X}^{2}=\left\{\begin{array}{ll}
\frac{16}{12} & -1.0 \leq X \leq 1.0 \\
\frac{4}{12} & 1.0 \leq X \leq 2.0
\end{array}\right\}
\end{aligned}
$$

The expected value $\mathbf{E}[Y]$ can be obtained by averaging the conditional mean over x.

$$
\begin{aligned}
\mathbf{E}[y]=\mathbf{E}[\mathbf{E}[Y \mid X]] & =(0.0) \mathbf{P}(-1 \leq X \leq 1)+(0.0) \mathbf{P}(1 \leq X \leq 2) \\
& =(0)(0.8+(0)(0.2))=0.0
\end{aligned}
$$

(f) It is to be noted that σ_{X}^{2} cannot be simply obtained by evaluating $E\left[\sigma_{X \mid Y}^{2}\right]$ as we do with the means. By definition of variance,

$$
\begin{aligned}
\sigma_{X}^{2} & =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \\
& =\mathbf{E}\left[\mathbf{E}\left[X^{2} \mid Y\right]\right]-(\mathbf{E}[\mathbf{E}[X \mid Y]])^{2} \\
& =\mathbf{E}\left[\sigma_{X \mid Y}^{2}+\mathbf{E}[X \mid Y]^{2}\right)-(\mathbf{E}[X])^{2}
\end{aligned}
$$

We have already computed both $\sigma_{X \mid Y}^{2}$ and $\mathbf{E}[x \mid y]^{2}$. Therefore, we obtain,

$$
\begin{aligned}
\sigma_{X}^{2} & =\left(\frac{4}{12}\right) \mathbf{P}(-2 \leq Y \leq-1)+\left(\frac{9}{12}+\left(\frac{1}{2}\right)^{2}\right) \mathbf{P}(-1 \leq Y \leq 1)+\left(\frac{4}{12}\right) P(1 \leq Y \leq 2)-(\mathbf{E}[x])^{2} \\
& =0.643
\end{aligned}
$$

Similarly, we can get $\sigma_{Y}^{2}=1.132$.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)
2. See online supplementary problem solutions (Problem 14, Section 3.5)

