MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

Problem Set 10 Topics: Poisson, Markov chains Due: May 10th, 2006

- 1. All ships travel at the same speed through a wide canal. Eastbound ship arrivals at the canal are a Poisson process with an average arrival rate λ_E ships per day. Westbound ships arrive as an independent Poisson process with average arrival rate λ_W per day. An indicator at a point in the canal is always pointing in the direction of travel of the most recent ship to pass it. Each ship takes t days to traverse the length of the canal.
 - (a) Given that the pointer is pointing west:
 - i. What is the probability that the next ship to pass it will be westbound?
 - ii. What is the PDF for the remaining time until the pointer changes direction?
 - (b) What is the probability that an eastbound ship will see no westbound ships during its eastward journey through the canal?
 - (c) We begin observing at an arbitrary time. Let V be the time we have to continue observing until we see the seventh eastbound ship. Determine the PDF for V.
- 2. (a) Shuttles depart from New York to Boston every hour on the hour. Passengers arrive according to a Poisson process of rate λ per hour. Find the expected number of passengers on a shuttle. (Ignore issues of limited seating.)
 - (b) Now suppose that the shuttles are no longer operating on a deterministic schedule, but rather their interdeparture times are independent and exponentially distributed with rate μ per hour. Find the PMF for the number of shuttles arriving in one hour.
 - (c) Let us define an "event" in the airport to be either the arrival of a passenger, or the departure of a plane. With the same assumptions as in (b) above, find the expected number of "events" that occur in one hour.
 - (d) If a passenger arrives at the gate, and sees 2λ people waiting, find his/her expected time to wait until the next shuttle.
 - (e) Find the PMF for the number of people on a shuttle.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

3. Consider the following Markov chain:

Given that the above process is in state S_0 just before the first trial, determine by inspection the probability that:

- (a) The process enters S_2 for the first time as the result of the kth trial.
- (b) The process never enters S_4 .
- (c) The process enters S_2 and then leaves S_2 on the next trial.
- (d) The process enters S_1 for the first time on the third trial.
- (e) The process is in state S_3 immediately after the *n*th trial.
- 4. (a) Identify the transient, recurrent, and periodic states of the discrete state discretetransition Markov process described by

$$[p_{ij}] = \begin{bmatrix} 0.5 & 0 & 0 & 0 & 0.5 & 0 & 0 \\ 0.3 & 0.4 & 0 & 0 & 0.2 & 0.1 & 0 \\ 0 & 0 & 0.6 & 0.2 & 0 & 0.2 & 0 \\ 0 & 0 & 0 & 0.5 & 0 & 0 & 0.5 \\ 0.3 & 0.4 & 0 & 0 & 0.3 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.6 & 0 & 0 & 0.4 \end{bmatrix}$$

- (b) How many classes are formed by the recurrent states of this process?
- (c) Evaluate $\lim_{n\to\infty} p_{41}(n)$ and $\lim_{n\to\infty} p_{66}(n)$.
- 5. Out of the d doors of my house, suppose that in the beginning k > 0 are unlocked and d k are locked. Every day, I use exactly one door, and I am equally likely to pick any of the d doors. At the end of the day, I leave the door I used that day locked.
 - (a) Show that the number of unlocked doors at the end of day n, L_n , evolves as the state in a Markov process for $n \ge 1$. Write down the transition probabilities p_{ij} .
 - (b) List transient and recurrent states.
 - (c) Is there an absorbing state? How does $r_{ij}(n)$ behave as $n \to \infty$?
 - (d) Now, suppose that each day, if the door I pick in the morning is locked, I will leave it unlocked at the end of the day, and if it is initially unlocked, I will leave it locked. Repeat parts (a)-(c) for this strategy.

- (e) My third strategy is to alternate between leaving the door I use locked one day and unlocked the next day (regardless of the initial condition of the door.) In this case, does the number of unlocked doors evolve as a Markov chain, why/why not?
- G1[†]. Consider a Markov chain $\{X_k\}$ on the state space $\{1, \ldots, n\}$, and suppose that whenever the state is *i*, a reward g(i) is obtained. Let R_k be the total reward obtained over the time interval $\{0, 1, \ldots, k\}$, that is, $R_k = g(X_0) + g(X_1) + \cdots + g(X_k)$. For every state *i*, let

$$m_k(i) = E[R_k \mid X_0 = i],$$

and

$$v_k(i) = \operatorname{var}(R_k \mid X_0 = i)$$

respectively be the conditional mean and conditional variance of R_k , conditioned on the initial state being *i*.

- (a) Find a recursion that, given the values of $m_k(1), \ldots, m_k(n)$, allows the computation of $m_{k+1}(1), \ldots, m_{k+1}(n)$.
- (b) Find a recursion that, given the values of $m_k(1), \ldots, m_k(n)$ and $v_k(1), \ldots, v_k(n)$, allows the computation of $v_{k+1}(1), \ldots, v_{k+1}(n)$. *Hint*: Use the law of total variance.
- $G2^{\dagger}$. The parking garage at MIT has installed a card operated gate, which, unfortunately, is vulnerable to absent-minded faculty and staff. In particular, in each day a car crashes the gate with probability p, in which case a new gate must be installed. Also a gate that has survived for m days must be replaced as a matter of periodic maintenance. What is the steady-state expected frequency of gate replacements?