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Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Spring 2006) 

Problem Set 1: Solutions 
Due: February 15, 2006 

1. (a) A ∪ B ∪ C 

(b) (A ∩ Bc ∩ Cc) ∪ (Ac ∩ B ∩ Cc) ∪ (Ac ∩ Bc ∩ C) ∪ (Ac ∩ Bc ∩ Cc) 

(c) (A ∪ B ∪ C)c = Ac ∩ Bc ∩ Cc 

(d) A ∩ B ∩ C 

(e) (A ∩ Bc ∩ Cc) ∪ (Ac ∩ B ∩ Cc) ∪ (Ac ∩ Bc ∩ C) 

(f) A ∩ B ∩ Cc 

(g) A ∪ (Ac ∩ Bc) 
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2.	 (a) We have already proved in lecture and in the course notes that 

P (A ∪ B) =  P (A) +  P (B) − P (A ∩ B). 

Rearranging, we get 

P (A ∩ B) =  P (A) +  P (B) − P (A ∪ B). 

Since (A ∪ B) is always a subset of Ω, the universal event, therefore, P (A ∪ B) ≤ P (Ω) 
and 

P (A ∩ B) ≥ P (A) +  P (B) − P (Ω). 

Finally, by the normalization axiom, P (Ω) = 1 and


P (A ∩ B) ≥ P (A) +  P (B) − 1.


(b) We begin by writing 

P (A or B, but not both)	 = P ((Ac ∩ B) + (A ∩ Bc)) 
= P (Ac ∩ B) +  P (A ∩ Bc), 

where the last equality is from the additivity axiom. Next, we know that B = (Ac ∩ 
B) ∪ (A ∩ B) and  (Ac ∩ B) ∩ (A ∩ B) =  ∅ so that we may apply the additivity axiom to 
get 

P (B) =  P (Ac ∩ B) +  P (A ∩ B). 
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With rearrangement, this becomes 

P (Ac ∩ B) =  P (B) − P (A ∩ B). 

By symmetry, we also have 

P (Bc ∩ A) =  P (A) − P (A ∩ B). 

So plugging in for P (Ac ∩ B) and  P (Bc ∩ A), we get 

P (A or B, but not both)	 = P (B) − P (A ∩ B) +  P (A) − P (A ∩ B) 
= P (A) +  P (B) − 2P (A ∩ B). 

3.	 (a) We are given P (A) = 3/7, P (B ∩ C) = 0  and  P (A ∩ B ∩ C) = 0. Using De Morgan’s 
laws, we know (Bc ∪ Cc)c = B ∩ C. Therefore 

P (A ∪ (Bc ∪ Cc)c) =  P (A ∪ (B ∩ C)) = P (A) +  P (B ∩ C) − P (A ∩ (B ∩ C)) = 3/7 . 

(b) We are given P (A) = 1/2, P (B∩ C) = 1/3 and  P (A∩ C) = 0. Therefore, again applying 
De Morgan’s laws, 

P (A ∪ (Bc ∪ Cc)c) =  P (A ∪ (B ∩ C)) = P (A) +  P (B ∩ C) − P (A ∩ (B ∩ C)) = 

where we deduce A ∩ B ∩ C = ∅ (and thus P (A ∩ B ∩ C) = 0) because A ∩ C = ∅ and 
A ∩ B ∩ C ⊆ A ∩ C. 

(c) We are given P (Ac ∩ (Bc ∪ Cc)) = 0.65 and De Morgan’s laws imply (Ac ∩ (Bc ∪ Cc))c = 
A ∪ (Bc ∪ Cc)c, which is the event of interest. Therefore 

P (A ∪ (Bc ∪ Cc)c) = 1  − P (Ac ∩ (Bc ∪ Cc)) = 0.35 

4. We could have a two-dimensional sample space containing 522 points, where each axis repre-
sents a particular card. However, this sample space would be finer grain than necessary to 
determine the desired probabilities. 

For parts a) and c), we have a sample space of 169 points representing the 169 possible 
outcomes.


Define event B to be when Bob draws an ace, event A to be when Anne draws an ace. Then

we know that


1P (A) =  P (B) =  13 
1P (A ∩ B) =  169 

25P(at least one card is an ace) =P (A ∪ B) =  P (A) +  P (B) − P (A ∩ B) =  169 

144P(neither card is an ace) = 1- P(at least one card is an ace) = 169 

For parts b) and d), since we are only interested in the suits of the cards, we represent the 
sample space as the following 16 points. The horizontal axis represents the suit of Anne’s 
card, and the vertical axis represents the suit of Bob’s card. Each of the points is equally 

1likely; therefore, the probability of any particular point occurring is 16 . 

Page 2 of 6 

5/6 



Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Spring 2006) 

C 

D 

Suit of 

Bob’s Card 

H 

S 

S H D C 

Suit of Anne’s Card 

The probabilities requested can be determined by counting the number of points satisfying 
each condition and dividing the total by 16, as shown in the figures below. 

C C 

D D 
Suit of Suit of d) 4/16

Bob’s Card b) 4/16 Bob’s Card 

H H 

S S 

S H D C S H D C 

Suit of Anne’s Card Suit of Anne’s Card 

5. P(B) 

The shaded area in the following figure is the union of Alice’s pick being greater than 1/3 
and Bob’s pick being greater than 1/3. 

1 

2 

1/3 

Bob 

0 1/3 1 2 Alice 

P (B) = 1  − P (both numbers are smaller than 1/3) 

= 1  − 
Area of small square 

T otal sample area 
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1/3 ∗ 1/3
= 1  − 

4

= 1  − 1/36


= 35/36 

P(C) 

In  the  following  figure,  the  line x = y represents  the  set of points where  two  numbers  are  
equal. 

Bob 

2 

1 

1/3 

0 1/3 1 2 Alice 

The line has an area of 0. Thus, 

Area of line 
P (C) =  

Total sample area 
0 

= 
4 

= 0 

P(A ∩ D) 

Overlapping the diagrams we would get for P(A) and P(D), 
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double shaded area 
P (A ∩ D) =  

Total  sample  area  

5/3 ∗ 5/3 ∗ 1/2 + 4/3 ∗ 4/3 ∗ 1/2 
= 

4 

= 
25/18 + 16/18 

4 

= 41/72 

6. We begin by enumerating the sample space Ω and identifying the relative probabilities of all 
outcomes, as shown in the table below, where p ∈ [0, 1] will need to be determined. 

Die 1 Die 2 Product P(Product) 
1 1 1 p 
1 2 2  2p  
1 3 3  3p  
1 4 4  4p  
2 1 2  2p  
2 2 4  4p  
2 3 6  6p  
2 4 8  8p  
3 1 3  3p  
3 2 6  6p  
3 3 9  9p  
3 4 12 12p 
4 1 4  4p  
4 2 8  8p  
4 3 12 12p 
4 4 16 16p 

Total 100p 

1 
P (Ω) = 1 = 100p ⇒ p = = 0.01

100 

Page 5 of 6 



Massachusetts Institute of Technology 
Department of Electrical Engineering & Computer Science 

6.041/6.431: Probabilistic Systems Analysis 
(Spring 2006) 

(a) Let set A indicate the event that the product is even. Then, 

P (A) = 2p + 4p + 2p + 4p + 6p + 8p + 6p + 12p + 4p + 8p + 12p + 16p = 84p = 0.84 

(b) Let set B indicate the event of rolling a 2 and 3. Then, 

P (B) =  P (2, 3) + P (3, 2) = 6p + 6p = 12p = 0.12 

G1† . (a) Define event E = A ∪ B. Then E ∩ C = (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). 
Therefore P (E ∩ C) =  P (A ∩ C) +  P (B ∩ C) − P (A ∩ B ∩ C) 

P (A ∪ B ∪ C) =  P (E ∪ C) 
= P (E) +  P (C) − P (E ∩ C) 
= P (A ∪ B) +  P (C) − P (A ∩ C) − P (B ∩ C) +  P (A ∩ B ∩ C) 
= P (A) +  P (B) +  P (C) − P (A ∩ C) − P (B ∩ C) − P (A ∩ B) +  P (A ∩ B ∩ C) 

(b) We will apply an inductive argument. 

Base Case:

P (A1) =  P (A1)


Inductive Step:

Assume P (∪n−1Ak) =  P (A1) +  P (Ac 

1 ∩ Ac

1 ∩ A2) +  P (Ac 

2 ∩ A3)k=1 

+ · · ·+ P (Ac
n−2 ∩ An−1).1 ∩ · · · ∩ Ac 

n P (∪n−1P (∪k=1Ak) =  Ak ∪ An)k=1 

= P (A1) +  P (Ac 
1 ∩ Ac 

1 ∩ · · · ∩ Ac 
1 ∩ A2) +  P (Ac 

2 ∩ A3) +  · · ·+ P (Ac
n−2 ∩ An−1) 

+(P (An) − P (∪n−1Ak ∩ An))k=1 

= P (A1) +  P (Ac 
1 ∩ Ac 

1 ∩ · · · ∩ Ac 
1 ∩ A2) +  P (Ac 

2 ∩ A3) +  · · ·+ P (Ac
n−2 ∩ An−1) 

+P ((∪n−1Ak)c ∩ An)k=1 

= P (A1) +  P (Ac 
1 ∩ Ac 

1 ∩ · · · ∩ Ac 
1 ∩ A2) +  P (Ac 

2 ∩ A3) +  · · ·+ P (Ac
n−1 ∩ An). 
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