Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

 (Spring 2006)
Problem Set 3: Solutions Due: March 1, 2006

1. The problem did not explicitly state that two cars cannot share a parking space, but it was expected that you would assume this when doing the required counting.
The figure below depicts the full outcome space for the case of $N=5$. The 8 outcomes in the box (out of the total of 20 outcomes) are those for which Mary and Tom are parked adjacently.

Extending this idea to a parking lot with N spaces, the desired probability is given by

$$
\begin{aligned}
\mathbf{P}(\text { parked adjacently }) & =\frac{\text { number of outcomes with adjacent parking }}{\text { total number of outcomes }} \\
& =\frac{2(N-1)}{N^{2}-N} \\
& =\frac{2}{N} .
\end{aligned}
$$

2. (a) There are nine equally-likely ordered pairs $(i, j), i \in\{1,2,3\}, j \in\{1,2,3\}$. By looking at the five possible sums and their frequencies, we obtain

$$
p_{X}(k)= \begin{cases}1 / 9, & k=1 ; \\ 2 / 9, & k=2 ; \\ 3 / 9, & k=3 ; \\ 2 / 9, & k=4 ; \\ 1 / 9, & k=5 ; \\ 0, & \text { otherwise. }\end{cases}
$$

(b) The fair price is $\mathbf{E}[5 X]$ because then the net expected result is $\mathbf{E}[5 X-a]=0$.

$$
\mathbf{E}[5 X]=\frac{1}{9} \cdot 5+\frac{2}{9} \cdot 10+\frac{3}{9} \cdot 15+\frac{2}{9} \cdot 20+\frac{1}{9} \cdot 25=15
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science

 6.041/6.431: Probabilistic Systems Analysis

 6.041/6.431: Probabilistic Systems Analysis}
(Spring 2006)
(c) The possible values for X are changed, but the probabilities are unchanged:

$$
\begin{gathered}
p_{X}(k)= \begin{cases}1 / 9, & k=1 ; \\
2 / 9, & k=4 ; \\
3 / 9, & k=9 ; \\
2 / 9, & k=16 ; \\
1 / 9, & k=25 ; \\
0, & \text { otherwise }\end{cases} \\
\mathbf{E}[5 X]=\frac{1}{9} \cdot 5+\frac{2}{9} \cdot 20+\frac{3}{9} \cdot 45+\frac{2}{9} \cdot 80+\frac{1}{9} \cdot 125=\frac{155}{3}
\end{gathered}
$$

3. Denote the die rolls by W and Z. The sixteen equally-likely (W, Z) ordered pairs are depicted below, where the label in each cell is the (X, Y) pair.

	$Z=1$	$Z=2$	$Z=3$	$Z=4$
$W=1$	$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$
$W=2$	$(1,1)$	$(1,2)$	$(2,2)$	$(3,2)$
$W=3$	$(2,1)$	$(2,2)$	$(2,3)$	$(3,3)$
$W=4$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$

(a) From the table, we can read off the PMFs

$$
p_{X}(k)=\left\{\begin{array}{ll}
1 / 16, & k=0 ; \\
3 / 16, & k=1 ; \\
5 / 16, & k=2 ; \\
7 / 16, & k=3 ; \\
0, & \text { otherwise } ;
\end{array} \quad \text { and } \quad p_{Y}(k)= \begin{cases}7 / 16, & k=1 \\
5 / 16, & k=2 \\
3 / 16, & k=3 \\
1 / 16, & k=4 ; \\
0, & \text { otherwise }\end{cases}\right.
$$

and thus compute the expectations

$$
\mathbf{E}[X]=\frac{1}{16} \cdot 0+\frac{3}{16} \cdot 1+\frac{5}{16} \cdot 2+\frac{7}{16} \cdot 3=\frac{17}{8}
$$

and

$$
\mathbf{E}[Y]=\frac{7}{16} \cdot 1+\frac{5}{16} \cdot 2+\frac{3}{16} \cdot 3+\frac{1}{16} \cdot 4=\frac{15}{8} .
$$

We get by linearity of the expectation that $\mathbf{E}[X-Y]=\mathbf{E}[X]-\mathbf{E}[Y]=\frac{1}{4}$.
(b) Using the PMFs in part (a), we can compute

$$
\mathbf{E}\left[X^{2}\right]=\frac{1}{16} \cdot 0^{2}+\frac{3}{16} \cdot 1^{2}+\frac{5}{16} \cdot 2^{2}+\frac{7}{16} \cdot 3^{2}=\frac{43}{8}
$$

and

$$
\mathbf{E}\left[Y^{2}\right]=\frac{7}{16} \cdot 1^{2}+\frac{5}{16} \cdot 2^{2}+\frac{3}{16} \cdot 3^{2}+\frac{1}{16} \cdot 4^{2}=30 .
$$

Thus, $\operatorname{var}(X)=\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}=\frac{55}{64}$ and $\operatorname{var}(Y)=\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}=\frac{1695}{64}$.

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

 (Spring 2006)Since X and Y are not independent, the variance of X and Y is not any simple combination of previous results. Instead, let $Z=X-Y$ and find the PMF of Z as

$$
p_{Z}(k)= \begin{cases}4 / 16, & k=-1 \\ 6 / 16, & k=0 \\ 4 / 16, & k=1 ; \\ 2 / 16, & k=2 \\ 0, & \text { otherwise }\end{cases}
$$

Now

$$
\mathbf{E}\left[Z^{2}\right]=\frac{4}{16} \cdot(-1)^{2}+\frac{6}{16} \cdot 0^{2}+\frac{4}{16} \cdot 1^{2}+\frac{2}{16} \cdot 2^{2}=1,
$$

and $\operatorname{var}(Z)=\mathbf{E}\left[Z^{2}\right]-(\mathbf{E}[Z])^{2}=1-(1 / 4)^{2}=\frac{15}{16} .(\mathbf{E}[Z]$ was computed in part (a) and can also be double-checked with the PMF above.)

We will use the formula

$$
\operatorname{var}(Y)=\mathbf{E}\left[Y^{2}\right]-(\mathbf{E}[Y])^{2}
$$

for the variance of a random variable Y. Let $Y=(X-\hat{x})$. Then

$$
e(\hat{x})=\mathbf{E}\left[(X-\hat{x})^{2}\right]=\operatorname{var}(X-\hat{x})+(\mathbf{E}[X-\hat{x}])^{2}=\operatorname{var}(X)+(\mathbf{E}[X]-\hat{x})^{2},
$$

where the last equality follows from the fact that shifting a random variable by a constant (in this case \hat{x}) does not change its variance. Since the first term is not dependent on \hat{x} and the second is always nonnegative, we see that this expression is minimized when $\mathbf{E}[X]-\hat{x}=0$. This is equivalent to the desired result of $\hat{x}=\mathbf{E}[X]$.
8. (a) From the joint PMF, there are six (x, y) coordinate pairs with nonzero probabilities of occurring. These pairs are $(1,1),(1,3),(2,1),(2,3),(4,1)$, and $(4,3)$. The probability of a pair is proportional to the product of the x and y coordinate of the pair. Because the probability of the entire sample space must equal 1 , we have:

$$
(1 \cdot 1) c+(1 \cdot 3) c+(2 \cdot 1) c+(2 \cdot 3) c+(4 \cdot 1) c+(4 \cdot 3) c=1 .
$$

Solving for c, we get $c=\frac{1}{28}$
(b) There are three sample points for which $Y<X$.

$$
\mathbf{P}(Y<X)=\mathbf{P}(\{(2,1)\})+\mathbf{P}(\{(4,1)\})+\mathbf{P}(\{(4,3)\})=\frac{2 \cdot 1}{28}+\frac{4 \cdot 1}{28}+\frac{4 \cdot 3}{28}=\frac{18}{28}
$$

(c) There are two sample points for which $Y>X$.

$$
\mathbf{P}(Y>X)=\mathbf{P}(\{(1,3)\})+\mathbf{P}(\{(2,3)\})=\frac{1 \cdot 3}{28}+\frac{2 \cdot 3}{28}=\frac{9}{28}
$$

(d) There is only one sample point for which $Y=X$.

$$
\mathbf{P}(Y=X)=\mathbf{P}(\{(1,1)\})=\frac{1 \cdot 1}{28}=\frac{1}{28}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

Notice that, using the above two parts:

$$
\mathbf{P}(Y<X)+\mathbf{P}(Y>X)+\mathbf{P}(Y=X)=\frac{18}{28}+\frac{9}{28}+\frac{1}{28}=1
$$

as expected.
(e) There are three sample points for which $y=3$.

$$
\mathbf{P}(Y=3)=\mathbf{P}(\{(1,3)\})+\mathbf{P}(\{(2,3)\})+\mathbf{P}(\{(4,3)\})=\frac{3}{28}+\frac{6}{28}+\frac{12}{28}=\frac{21}{28}
$$

(f) In general, for two discrete random variables X and Y for which a joint PMF is defined, we have

$$
p_{X}(x)=\sum_{y=-\infty}^{\infty} p_{X, Y}(x, y) \quad \text { and } \quad p_{Y}(y)=\sum_{x=-\infty}^{\infty} p_{X, Y}(x, y) .
$$

In this problem the number of possible (X, Y) pairs is quite small, so we can determine the marginal PMFs by enumeration. For example,

$$
p_{X}(2)=\mathbf{P}(\{(2,1)\})+\mathbf{P}(\{(2,3)\})=\frac{8}{28} .
$$

Overall, we get:

$$
p_{X}(x)=\left\{\begin{array}{ll}
4 / 28, & x=1 ; \\
8 / 28, & x=2 ; \\
16 / 28, & x=4 ; \\
0, & \text { otherwise }
\end{array}= \begin{cases}1 / 7, & x=1 ; \\
2 / 7, & x=2 \\
4 / 7, & x=4 \\
0, & \text { otherwise }\end{cases}\right.
$$

and

$$
p_{Y}(y)=\left\{\begin{array}{ll}
7 / 28, & y=1 ; \\
21 / 28, & y=3 ; \\
0, & \text { otherwise }
\end{array} \quad= \begin{cases}1 / 4, & y=1 \\
3 / 4, & y=3 \\
0, & \text { otherwise }\end{cases}\right.
$$

(g) In general, the expected value of any discrete random variable X is given by

$$
\mathbf{E}[X]=\sum_{x=-\infty}^{\infty} x p_{X}(x)
$$

For this problem,

$$
\mathbf{E}[X]=1 \cdot \frac{1}{7}+2 \cdot \frac{2}{7}+4 \cdot \frac{4}{7}=3
$$

and

$$
\mathbf{E}[Y]=1 \cdot \frac{1}{4}+3 \cdot \frac{3}{4}=\frac{5}{2}
$$

(h) The variance of a random variable X can be computed as $\mathbf{E}\left[X^{2}\right]-\mathbf{E}[X]^{2}$ or as $\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]$. Here we use the second approach.

$$
\begin{gathered}
\operatorname{var}(X)=(1-3)^{2} \cdot \frac{1}{7}+(2-3)^{2} \cdot \frac{2}{7}+(4-3)^{2} \cdot \frac{4}{7}=\frac{10}{7} \\
\operatorname{var}(Y)=\left(1-\frac{5}{2}\right)^{2} \frac{1}{4}+\left(3-\frac{5}{2}\right)^{2} \frac{3}{4}=\frac{9}{16}+\frac{1}{16}=\frac{5}{8}
\end{gathered}
$$

Massachusetts Institute of Technology Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
G1 ${ }^{\dagger}$. Starting with the hint, we have

$$
\mathbf{E}\left[(\alpha X+Y)^{2}\right] \geq 0
$$

which can be expanded to

$$
\alpha^{2} \mathbf{E}\left[X^{2}\right]+2 \alpha \mathbf{E}[X Y]+\mathbf{E}\left[Y^{2}\right] \geq 0
$$

The lack of real solutions α to

$$
\alpha^{2} \mathbf{E}\left[X^{2}\right]+2 \alpha \mathbf{E}[X Y]+\mathbf{E}\left[Y^{2}\right]=\beta
$$

for any $\beta<0$ implies that the discriminant of the above quadratic, $(2 \mathbf{E}[X Y])^{2}-4 \mathbf{E}\left[X^{2}\right] \mathbf{E}\left[Y^{2}\right]$, must be nonpositive. Rearranging

$$
(2 \mathbf{E}[X Y])^{2}-4 \mathbf{E}\left[X^{2}\right] \mathbf{E}\left[Y^{2}\right] \leq 0
$$

gives the desired result.

