Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis
 (Spring 2006)

Problem Set 6

Due: April 5, 2006

1. Suppose that

$$
M_{X}(s)=\frac{1}{3} \cdot \frac{1}{1-s}+\frac{2}{3} \cdot \frac{3}{3-s} .
$$

What is the PDF of X ?
2. Find the transform of the random variable X with density function:

$$
f_{X}(x)= \begin{cases}p \lambda e^{-\lambda x}+(1-p) \mu e^{-\mu x} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where p is a constant with $0 \leq p \leq 1$.
3. Consider random variable Z with transform

$$
M_{Z}(s)=\frac{a-3 s}{s^{2}-6 s+8}
$$

(a) Find the numerical value for the parameter a.
(b) Find $\mathbf{P}(Z \geq 0.5)$.
(c) Find $\mathbf{E}[Z]$ by using the probability distribution of Z.
(d) Find $\mathbf{E}[Z]$ by using the transform of Z and without explicity using the probability distribution of Z.
(e) Find $\operatorname{var}(Z)$ by using the probability distribution of Z.
(f) Find $\operatorname{var}(Z)$ by using the transform of Z and without explicity using the probability distribution of Z.
4. A coin is tossed repeatedly, heads appearing with probability q on each toss. Let random variable T denote the number of tosses when a run of n consecutive heads has appeared for the first time.
(a) Show that the PMF for T can be expressed as

$$
p_{T}(k)=\left\{\begin{array}{ll}
0 & , \quad k<n \\
q^{n} & , \quad k=n \\
\left(\sum_{i=k-n}^{\infty} p_{T}(i)\right)(1-q) q^{n} & , \quad k \geq n+1
\end{array} .\right.
$$

(b) Determine the transform $M_{T}(s)$ associated with random variable T.
(c) Compute $\mathbf{E}[T]$, the expectation of random variable T.
5. This problem is based on an example covered in Monday's lecture (lecture 11). Let X and N be two independent normal random variables. Say $X \sim N\left(0, \sigma_{x}^{2}\right)$ and $N \sim N\left(0, \sigma_{n}^{2}\right)$. Let $Y=X+N$. In lecture we saw that Y is also normal. The lecture slides also prove that the conditional PDF $f_{Y \mid X}(y \mid x)$ is normal.
Prove that for every value of y, the conditional density $f_{X \mid Y}(x \mid y)$ is normal.

Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Spring 2006)
6. Four fair 6 -sided dice are rolled independently of each other. Let X_{1} be the sum of the numbers on the first and second dice, and X_{2} be the sum of the numbers on the third and fourth dice. Convolve the PMFs of the random variables X_{1} and X_{2} to find the probability that the outcomes of the four dice rolls sum to 8 .
7. Consider two independent random variables X and Y. Let $f_{X}(x)=1-x / 2$ for $x \in[0,2]$ and 0 otherwise. Let $f_{Y}(y)=2-2 y$ for $y \in[0,1]$ and 0 otherwise. Give the PDF of $W=X+Y$.

G1 ${ }^{\dagger}$. Let $X_{1}, X_{2}, \ldots, X_{n}$ be drawn i.i.d from the uniform distribution on $[0,1]$. Let Y be the minimum of the X_{i}, and let Z be the maximum of the X_{i}. Let $W=Y+Z$. Compute $f_{W}(w)$, and prove that for all $\epsilon>0, \lim _{n \rightarrow \infty} \mathbf{P}(|W-1|>\epsilon)=0$. Thus, for large n, with very high probability W is close to 1 .

