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1. Consider an exponentially distributed random variable X with parameter λ. Let F be the
distribution function. Find the real number µ that satisfies: F (µ) = 1

2 . This number µ is called
the median of the random variable.

2. One of two wheels of fortune, A and B, is selected by the flip of a fair coin, and the wheel chosen
is spun once to determine the experimental value of random variable X. Random variable Y ,
the reading obtained with wheel A, and random variable W , the reading obtained with wheel B,
are described by the PDFs

fY (y) =

{

1, 0 < y ≤ 1;
0, otherwise,

and fW (w) =

{

3, 0 < w ≤ 1
3 ;

0, otherwise.

If we are told the experimental value of X was less than 1
4 , what is the conditional probability

that wheel A was the one selected?

3. A 6.041 graduate opens a new casino in Las Vegas and decides to make the games more challenging
from a probabilistic point of view. In a new version of roulette, each contestant spins the following
kind of roulette wheel. The wheel has radius r and its perimeter is divided into 20 intervals,
alternating red and black. The red intervals (along the perimeter) are twice the width of the
black intervals (also along the perimeter). The red intervals all have the same length and the
black intervals all have the same length. After the wheel is spun, the center of the ball is equally
likely to settle in any position on the edge of the wheel; in other words, the angle of the final
ball position (marked at the ball’s center) along the wheel’s perimeter is distributed uniformly
between 0 and 2π radians.

(a) What is the probability that the center of the ball settles in a red interval?

(b) Let B denote the event that the center of the ball settles in a black interval. Find the
conditional PDF fZ|B(z), where Z is the distance, along the perimeter of the roulette wheel,
between the center of the ball and the edge of the interval immediately clockwise from the
center of the ball?

(c) What is the unconditional PDF fZ(z)?

Another attraction of the casino is the Gaussian slot machine. In this game, the machine pro-
duces independent identically distributed (IID) numbers X1,X2, ... that have normal distribution
N (0, σ2). For every i, when the number Xi is positive, the player receives from the casino a sum
of money equal to Xi. When Xi is negative, the player pays the casino a sum of money equal to
|Xi|.

(d) What is the standard deviation of the net total gain of a player after n plays of the Gaussian
slot machine?

(e) What is the probability that the absolute value of the net total gain after n plays is greater
than 2

√
nσ?

4. Let a continuous random variable X be uniformly distributed over the interval [−1, 1]. Derive
the PDF fY (y) where:
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(a) Y = sin(π
2 X)

(b) Y = sin(2πX)

5. A Communication Example During lecture, we looked at a simple point-to-point communi-
cation example. The task was to transmit messages from one point to another, by using a noisy
channel. We modeled the problem probabilistically as follows:

• A binary message source generates independent successive messages M1,M2, · · · : each mes-
sage is a discrete random variable that takes the value 1 with probability p and the value 0
with probability 1 − p. For a single message, we write the PMF as:

pM (m) =

{

1 − p If m = 0
p If m = 1

• A binary symmetric channel acts on an input bit to produce an output bit, by flipping the
input with “crossover” probability e, or transmitting it correctly with probability 1 − e.

For a single transmission, this channel can be modeled using a conditional PMF pY |X(y|x),
where X and Y are random variables for the channel input and output bits respectively.
We then have:

pY |X(y|x) =

{

1 − e If y = x.
e If y 6= x.

Next, we make a series of assumptions that make the above single-transmission description
enough to describe multiple transmissions as well. We say that transmissions are:

(a) Independent: Outputs are conditionally independent from each other, given the inputs.

(b) Memoryless: Only the current input affects the current output.

(c) Time-invariant: We always have the same conditional PMF.

We write:

pY1,Y2,···|X1,X2,···(y1, y2, · · · |x1, x2, · · · )
(a)
= pY1|X1,X2,···(y1|x1, x2, · · · ) · pY2|X1,X2,···(y2|x1, x2, · · · ) · · ·
(b)
= pY1|X1

(y1|x1) · pY2|X2
(y2|x2) · · ·

(c)
= pY |X(y1|x1) · pY |X(y2|x2) · · ·
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Any transmission scheme through this channel must transform messages into channel inputs
(encoding), and transform channel outputs into estimates of the transmitted messages (decoding).
For this problem, we will encode each message separately (more elaborate schemes look at blocks
and trails of messages), and generate a sequence of n channel input bits. The encoder is therefore
a map:

{0, 1} 7−→ {0, 1}n

M −→ X1,X2, · · · ,Xn

The decoder is simply a reverse map:

{0, 1}n 7−→ {0, 1}
Y1, Y2, · · · , Yn −→ M̂

Note that we use the “hat” notation to indicate an estimated quantity, but bare in mind that
M and M̂ are two distinct random variables. The complete communication problem looks as
follows:

Finally, to measure the performance of any transmission scheme, we look at the probability of
error, i.e. the event that the estimated message is different than the transmitted message:

P(error) = P(M̂ 6= M).

(a) No encoding:

The simplest encoder sends each message bit directly through the channel, i.e. X1 = X =
M . Then, a reasonable decoder is to use the output channel directly as message estimate:
M̂ = Y1 = Y . What is the probability of error in this case?

(b) Repetition code with majority decoding rule:

The next thing we attempt to do is to send each message n > 1 times through this channel.
On the decoder end, we do what seems natural: decide 0 when there are more 0s than 1s,
and decide 1 otherwise. This is a “majority” decoding rule, and we can write it as follows
(making the dependence of M̂ on the channel outputs explicit):

M̂ (y1, · · · , yn) =

{

0 If y1 + · · · + yn < n/2.
1 If y1 + · · · + yn ≥ n/2.

Analytical results:

i. Find an expression of the probability of error as a function of e, p and n. [Hint: First
use the total probability rule to divide the problem into solving P(error|M = 0) and
P(error|M = 1), as we did in the lecture.]
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ii. Choose p = 0.5, e = 0.3 and use your favorite computational method to make a plot of
P(error) versus n, for n = 1, · · · , 15.

iii. Is majority decoding rule optimal (lowest P(error)) for all p? [Hint: What is the best
decoding rule if p = 0?].

Simulation:

i. Set p = 0.5, e = 0.3, generate a message of length 20.

ii. Encode your message with n = 3.

iii. Transmit the message, decode it, and write down the value of the message error rate
(the ratio of bits in error, over the total number of message bits).

iv. Repeat Step 3 serveral times, and average out all the message error rates that you
obtain. How does this compare to your analytical expression of P(error) for this value
of n?

v. Repeat Steps 3 and 4 for n = 5, 10, 15, and compare the respective average message
error rates to the corresponding analytical P(error).

(c) Repetition code with maximum a posteriori (MAP) rule:

In Part b, majority decoding was chosen almost arbitrarily, and we have alluded to the fact
that it might not be the best choice in some cases. Here, we claim that the probability of
error is in fact minimized when the decoding rule is as follows:

M̂(y1, · · · , yn) =







0
If P(M = 0|Y1 = y1, · · · , Yn = yn)

> P(M = 1|Y1 = y1, · · · , Yn = yn)
1 Otherwise.

This decoding rule is called “maximum a posterior” or MAP, because it chooses the value
of M which maximizes the posterior probability of M given the channel ouput bits Y1 =
y1, · · · , Yn = yn (another term for Bayes’ rule).

i. Denote by N0 the number of 0s in y1, · · · , yn, and by N1 the number of 1s. Express the
MAP rule as an inequality in terms of N0 and N1, and as a function of e and p. [Hint:
Use Bayes’ rule to decompose the posterior probability. Note that pY1,··· ,Yn

(y1, · · · , yn)
is a constant during one decoding.]

ii. Show that the MAP rule reduces to the majority rule if p = 0.5.

iii. Give an interpretation of how, for p 6= 0.5, the MAP rule deviates from the majority
rule. [Hint: Use the simplification steps of your previous answer, but keep p arbitrary.]

iv. (Optional) Prove that the MAP rule minimizes P(error).

G1†. Let X1,X2, . . . ,Xn, . . . be a sequence of independent and identically distributed random variables.
We define random variables S1, S2, . . . , Sn, . . . (n = 1, 2 . . .) in the following manner: Sn = X1 +
X2 + · · · + Xn. Find

E[X1 | Sn = sn, Sn+1 = sn+1, . . .]
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