Tutorial 3: Solutions March 2-3, 2006

1. (a)

$$p_S(s) = \sum_r \mathbf{P}(R = r, \ S = s)$$
$$p_{S|A}(s) = \frac{\mathbf{P}(S = s, \ A)}{\mathbf{P}(A)} = \frac{\mathbf{P}(S = s, \ S \neq 3)}{\mathbf{P}(S \neq 3)}$$

Plug in the values from the figure, we get the following answers:

$$p_S(s) = \begin{cases} 24/90, & s = 1; \\ 36/90, & s = 2; \\ 30/90, & s = 3; \\ 0, & \text{otherwise} \end{cases}$$

,

$$p_{S|A}(s) = P(S = s \cap A) / P(A) = \begin{cases} 24/60, & s = 1; \\ 36/60, & s = 2; \\ 0, & \text{otherwise.} \end{cases}$$

(The required sketches are omitted.)

(b) The joint PMF for R and Y can be calculated as follows:

 $p_{R,Y}(r, y) = p_R(r)\mathbf{P}(R - S = y|R = r) = p_R(r)\mathbf{P}(S = r - y|R = r) = p_{R,S}(r, r - y)$

We sketch the joint PMF for R and Y in the following figure:

(c)

$$p_{X|A}(x) = P(X = x \cap A)/P(A) = \begin{cases} 8/60, & x = 2; \\ 24/60, & x = 3; \\ 22/60, & x = 4; \\ 6/60, & x = 5; \\ 0, & \text{otherwise} \end{cases}$$

(The required sketch is omitted.)

2. We are given the following information:

$$p_{K}(k) = \begin{cases} 1/4, & \text{if } k = 1, 2, 3, 4; \\ 0, & \text{otherwise} \end{cases}$$
$$p_{N|K}(n \mid k) = \begin{cases} 1/k, & \text{if } n = 1, \dots, \ k \\ 0, & \text{otherwise} \end{cases}$$

(a) We use the fact that $p_{N,K}(n, k) = p_{N|K}(n \mid k)p_K(k)$ to arrive at the following joint PMF:

$$p_{N,K}(n, k) = \begin{cases} 1/(4k), & \text{if } k = 1, 2, 3, 4 \text{ and } n = 1, \dots, ; k \\ 0, & \text{otherwise} \end{cases}$$

(b) The marginal PMF $p_N(n)$ is given by the following formula:

$$p_N(n) = \sum_k p_{N,K}(n, k) = \sum_{k=n}^4 \frac{1}{4k}$$

On simplification this yields

$$p_N(n) = \begin{cases} 1/4 + 1/8 + 1/12 + 1/16 = 25/48, & n = 1; \\ 1/8 + 1/12 + 1/16 = 13/48, & n = 2; \\ 1/12 + 1/16 = 7/48, & n = 3; \\ 1/16 = 3/48, & n = 4; \\ 0, & \text{otherwise.} \end{cases}$$

(c) The conditional PMF is

$$p_{K|N}(k \mid 2) = \frac{p_{N,K}(2, k)}{p_N(2)} = \begin{cases} 6/13, & k = 2; \\ 4/13, & k = 3; \\ 3/13, & k = 4; \\ 0, & \text{otherwise.} \end{cases}$$

(d) Let A be the event $2 \le N \le 3$. We first find the conditional PMF of K given A.

$$p_{K|A}(k) = \frac{\mathbf{P}(K = k, A)}{\mathbf{P}(A)}$$

$$\mathbf{P}(A) = p_N(2) + p_N(3) = \frac{5}{12}$$

$$\mathbf{P}(K = k, A) = \begin{cases} \frac{1}{8}, & k = 2; \\ \frac{1}{12} + \frac{1}{12}, & k = 3; \\ \frac{1}{16} + \frac{1}{16}, & k = 4; \\ 0, & \text{otherwise} \end{cases}$$

$$p_{K|A}(k) = \begin{cases} \frac{3}{10}, & k = 2; \\ \frac{2}{5}, & k = 3; \\ \frac{3}{10}, & k = 4; \\ 0, & \text{otherwise} \end{cases}$$

Because the conditional PMF of K given A is symmetric around k = 3, we know $\mathbf{E}[K \mid A] = 3$. We now find the conditional variance of K given A.

$$var(K \mid A) = \mathbf{E}[(K - \mathbf{E}[K \mid A])^2 \mid A]$$

= $\frac{3}{10} \cdot (2 - 3)^2 + \frac{2}{5} \cdot 0 + \frac{3}{10} \cdot (4 - 3)^2$
= $\frac{3}{5}$

(e) Let C_i be the cost of book *i* and $\mathbf{E}[C_i] = 3$. Let *T* be the total cost, so $T = C_1 + \ldots + C_N$. We now find $\mathbf{E}[T]$ using the total expectation theorem.

$$\begin{split} \mathbf{E}[T] &= \mathbf{E}[T \mid N = 1]p_N(1) + \mathbf{E}[T \mid N = 2]p_N(2) + \mathbf{E}[T \mid N = 3]p_N(3) + \mathbf{E}[T \mid N = 4]p_N(4) \\ &= \mathbf{E}[C_1]p_N(1) + \mathbf{E}[C_1 + C_2]p_N(2) + \mathbf{E}[C_1 + C_2 + C_3]p_N(3) + \mathbf{E}[C_1 + C_2 + C_3 + C_4]p_N(4) \\ &= \mathbf{E}[C_i]p_N(1) + 2\mathbf{E}[C_i]p_N(2) + 3\mathbf{E}[C_i]p_N(3) + 4\mathbf{E}[C_i]p_N(4) \\ &= 3 \cdot \frac{25}{48} + 6 \cdot \frac{13}{48} + 9 \cdot \frac{7}{48} + 12 \cdot \frac{1}{16} \\ &= \frac{21}{4} \end{split}$$

3. (a) An easy way to derive $p_{X,Y,Z}(x, y, z)$ is in sequential terms as $p_X(x) \cdot p_{Y,Z|X}(y, z|x)$. Note $p_X(x)$ is geometric with parameter p. Conditioned on X even, (Y,Z) = (0,0) with probability 1. Conditioned on X odd, $p_{Y,Z|X}(y, z) = \frac{1}{4}$ for $(y, z) \in \{(0,0), (0,2), (2,0), (2,2)\}$.

$$p_{X,Y,Z}(x,y,z) = \begin{cases} \frac{1}{4}p(1-p)^{x-1}, & \text{if } x \text{ is odd and } (y,z) \in \{(0,0), (0,2), (2,0), (2,2)\} \\ p(1-p)^{x-1}, & \text{if } x \text{ is even and } (y,z) = (0,0) \\ 0, & \text{otherwise.} \end{cases}$$

(b) (i) No. Notice that even though conditional on X (i.e. given a realization, x, of random variable X), the random variables Y and Z are independent (that's why they look "regular"), Y and Z are not independent. Given Y, the distribution over Z changes (i.e. if Y is 2, Z is equally likely to be 0 or 2; however if Y is 0, Z is more likely to be 0).

- (ii) Yes. Given Z = 2, if we are further given X = x, Y is equally likely to take on the value 0 or 2.
- (iii) No. Given Z = 0, if we are further given X = x, then if x is even, Y must be 0, whereas if x is odd, Y is equally likely to take on 0 or 2.
- (iv) Yes. Given Z = 2, if we are further given X = x, Z = 2 still holds (i.e. with probability 1)! Double conditioning has no effect.
- (c) If X = 5, then Y and Z are uniformly distributed on the set S specified in the problem statement, so Y + Z takes the values 0 and 4 with probability $\frac{1}{4}$, and takes the value 2 with probability $\frac{1}{2}$. This PMF is symmetric about 2, so the mean value of Y + Z is evidently 2. Hence the variance is

$$(0-2)^2 \frac{1}{4} + (4-2)^2 \frac{1}{4} = 2.$$