Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)

Tutorial 3: Solutions
 March 2-3, 2006

1. (a)

$$
\begin{gathered}
p_{S}(s)=\sum_{r} \mathbf{P}(R=r, S=s) \\
p_{S \mid A}(s)=\frac{\mathbf{P}(S=s, A)}{\mathbf{P}(A)}=\frac{\mathbf{P}(S=s, S \neq 3)}{\mathbf{P}(S \neq 3)}
\end{gathered}
$$

Plug in the values from the figure, we get the following answers:

$$
\begin{gathered}
p_{S}(s)=\left\{\begin{array}{cl}
24 / 90, & s=1 \\
36 / 90, & s=2 \\
30 / 90, & s=3 \\
0, & \text { otherwise }
\end{array}\right. \\
p_{S \mid A}(s)=P(S=s \cap A) / P(A)=\left\{\begin{array}{cl}
24 / 60, & s=1 \\
36 / 60, & s=2 \\
0, & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

(The required sketches are omitted.)
(b) The joint PMF for R and Y can be calculated as follows:

$$
p_{R, Y}(r, y)=p_{R}(r) \mathbf{P}(R-S=y \mid R=r)=p_{R}(r) \mathbf{P}(S=r-y \mid R=r)=p_{R, S}(r, r-y)
$$

We sketch the joint PMF for R and Y in the following figure:

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
(c)

$$
p_{X \mid A}(x)=P(X=x \cap A) / P(A)=\left\{\begin{array}{cl}
8 / 60, & x=2 \\
24 / 60, & x=3 ; \\
22 / 60, & x=4 ; \\
6 / 60, & x=5 ; \\
0, & \text { otherwise }
\end{array}\right.
$$

(The required sketch is omitted.)
2. We are given the following information:

$$
\begin{gathered}
p_{K}(k)= \begin{cases}1 / 4, & \text { if } k=1,2,3,4 ; \\
0, & \text { otherwise }\end{cases} \\
p_{N \mid K}(n \mid k)= \begin{cases}1 / k, & \text { if } n=1, \ldots ., k \\
0, & \text { otherwise }\end{cases}
\end{gathered}
$$

(a) We use the fact that $p_{N, K}(n, A)=p_{N \mid K}(n \mid k) p_{K}(k)$ to arrive at the following joint PMF:

$$
p_{N, K}(n, A)= \begin{cases}1 /(4 k), & \text { if } k=1,2,3,4 \text { and } n=1, \ldots, ; k \\ 0, & \text { otherwise }\end{cases}
$$

(b) The marginal PMF $p_{N}(n)$ is given by the following formula:

$$
p_{N}(n)=\sum_{k} p_{N, K}(n, k)=\sum_{k=n}^{4} \frac{1}{4 k}
$$

On simplification this yields

$$
p_{N}(n)= \begin{cases}1 / 4+1 / 8+1 / 12+1 / 16=25 / 48, & n=1 ; \\ 1 / 8+1 / 12+1 / 16=13 / 48, & n=2 \\ 1 / 12+1 / 16=7 / 48, & n=3 \\ 1 / 16=3 / 48, & n=4 \\ 0, & \text { otherwise }\end{cases}
$$

(c) The conditional PMF is

$$
p_{K \mid N}(k \mid 2)=\frac{p_{N, K}(2, k)}{p_{N}(2)}= \begin{cases}6 / 13, & k=2 \\ 4 / 13, & k=3 \\ 3 / 13, & k=4 ; \\ 0, & \text { otherwise }\end{cases}
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

 (Spring 2006)(d) Let A be the event $2 \leq N \leq 3$. We first find the conditional PMF of K given A.

$$
\begin{aligned}
p_{K \mid A}(k) & =\frac{\mathbf{P}(K=k, A)}{\mathbf{P}(A)} \\
\mathbf{P}(A) & =p_{N}(2)+p_{N}(3)=\frac{5}{12} \\
\mathbf{P}(K=k, A) & = \begin{cases}\frac{1}{8}, & k=2 ; \\
\frac{1}{12}+\frac{1}{12}, & k=3 ; \\
\frac{1}{16}+\frac{1}{16}, & k=4 ; \\
0, & \text { otherwise }\end{cases} \\
p_{K \mid A}(k) & = \begin{cases}\frac{3}{10}, & k=2 ; \\
\frac{2}{5}, & k=3 ; \\
\frac{3}{10}, & k=4 ; \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Because the conditional PMF of K given A is symmetric around $k=3$, we know $\mathbf{E}[K \mid A]=3$. We now find the conditional variance of K given A.

$$
\begin{aligned}
\operatorname{var}(K \mid A) & =\mathbf{E}\left[(K-\mathbf{E}[K \mid A])^{2} \mid A\right] \\
& =\frac{3}{10} \cdot(2-3)^{2}+\frac{2}{5} \cdot 0+\frac{3}{10} \cdot(4-3)^{2} \\
& =\frac{3}{5}
\end{aligned}
$$

(e) Let C_{i} be the cost of book i and $\mathbf{E}\left[C_{i}\right]=3$. Let T be the total cost, so $T=C_{1}+\ldots+C_{N}$. We now find $\mathbf{E}[T]$ using the total expectation theorem.

$$
\begin{aligned}
\mathbf{E}[T] & =\mathbf{E}[T \mid N=1] p_{N}(1)+\mathbf{E}[T \mid N=2] p_{N}(2)+\mathbf{E}[T \mid N=3] p_{N}(3)+\mathbf{E}[T \mid N=4] p_{N}(4) \\
& =\mathbf{E}\left[C_{1}\right] p_{N}(1)+\mathbf{E}\left[C_{1}+C_{2}\right] p_{N}(2)+\mathbf{E}\left[C_{1}+C_{2}+C_{3}\right] p_{N}(3)+\mathbf{E}\left[C_{1}+C_{2}+C_{3}+C_{4}\right] p_{N}(4) \\
& =\mathbf{E}\left[C_{i}\right] p_{N}(1)+2 \mathbf{E}\left[C_{i}\right] p_{N}(2)+3 \mathbf{E}\left[C_{i}\right] p_{N}(3)+4 \mathbf{E}\left[C_{i}\right] p_{N}(4) \\
& =3 \cdot \frac{25}{48}+6 \cdot \frac{13}{48}+9 \cdot \frac{7}{48}+12 \cdot \frac{1}{16} \\
& =\frac{21}{4}
\end{aligned}
$$

3. (a) An easy way to derive $p_{X, Y, Z}(x, y, z)$ is in sequential terms as $p_{X}(x) \cdot p_{Y, Z \mid X}(y, z \mid x)$. Note $p_{X}(x)$ is geometric with parameter p. Conditioned on X even, $(Y, Z)=(0,0)$ with probability 1. Conditioned on X odd, $p_{Y, Z \mid X}(y, z)=\frac{1}{4}$ for $(y, z) \in\{(0,0),(0,2),(2,0),(2,2)\}$.

$$
p_{X, Y, Z}(x, y, z)= \begin{cases}\frac{1}{4} p(1-p)^{x-1}, & \text { if } x \text { is odd and }(y, z) \in\{(0,0),(0,2),(2,0),(2,2)\} \\ p(1-p)^{x-1}, & \text { if } x \text { is even and }(y, z)=(0,0) \\ 0, & \text { otherwise. }\end{cases}
$$

(b) (i) No. Notice that even though conditional on X (i.e. given a realization, x, of random variable X), the random variables Y and Z are independent (that's why they look "regular"), Y and Z are not independent. Given Y, the distribution over Z changes (i.e. if Y is $2, Z$ is equally likely to be 0 or 2 ; however if Y is $0, Z$ is more likely to be 0).

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
(ii) Yes. Given $Z=2$, if we are further given $X=x, Y$ is equally likely to take on the value 0 or 2 .
(iii) No. Given $Z=0$, if we are further given $X=x$, then if x is even, Y must be 0 , whereas if x is odd, Y is equally likely to take on 0 or 2 .
(iv) Yes. Given $Z=2$, if we are further given $X=x, Z=2$ still holds (i.e. with probability 1)! Double conditioning has no effect.
(c) If $X=5$, then Y and Z are uniformly distributed on the set S specified in the problem statement, so $Y+Z$ takes the values 0 and 4 with probability $\frac{1}{4}$, and takes the value 2 with probability $\frac{1}{2}$. This PMF is symmetric about 2, so the mean value of $Y+Z$ is evidently 2 . Hence the variance is

$$
(0-2)^{2} \frac{1}{4}+(4-2)^{2} \frac{1}{4}=2 .
$$

