6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)

Recitation 2: Solutions
 February 14, 2006

1. Problem 1.12, page 55 of text. See online solutions.
2. Problem 1.13, page 55 of text. See online solutions.
3. (a)

$$
\begin{aligned}
\mathbf{P}(\text { Fischer wins }) & =p+p(1-p-q)+p(1-p-q)^{2}+\cdots \\
& =\frac{p}{1-(1-p-q)} \\
& =\frac{p}{p+q}
\end{aligned}
$$

We may also find the solution through a simpler method:

$$
\begin{aligned}
\mathbf{P}(\text { Fischer wins } \mid \text { Someone wins }) & =\frac{\mathbf{P}(\text { Fischer wins })}{\mathbf{P}(\text { Someone wins })} \\
& =\frac{p}{p+q}
\end{aligned}
$$

(b) \mathbf{P} (the match lasted no more than 5 games)
$=(p+q)+(p+q)(1-p-q)+(p+q)(1-p-q)^{2}+(p+q)(1-p-q)^{3}+(p+q)(1-p-q)^{4}$
$=\frac{(p+q)\left[1-(1-p-q)^{5}\right]}{1-(1-p-q)}$
$=1-(1-p-q)^{5}$
\mathbf{P} (Fischer wins in the first game \cap the match lasted no more than 5 games)
$=p$

Therefore, \mathbf{P} (Fischer wins | the match lasted no more than 5 games)
$=\frac{\mathbf{P}(\text { Fischer wins } \cap \text { the match lasted no more than } 5 \text { games })}{\mathbf{P}(\text { the match lasted no more than } 5 \text { games })}$
$=\frac{p}{1-(1-p-q)^{5}}$

6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)
(c) \mathbf{P} (the match lasted no more than 5 games)
$=1-(1-p-q)^{5}$
\mathbf{P} (Fischer wins \cap the match lasted no more than 5 games)
$=p+p(1-p-q)+p(1-p-q)^{2}+p(1-p-q)^{3}+p(1-p-q)^{4}$
$=\frac{p\left[1-(1-p-q)^{5}\right]}{1-(1-p-q)}$
$=\frac{p\left[1-(1-p-q)^{5}\right]}{p+q}$
Therefore, \mathbf{P} (Fischer wins \mid the match lasted no more than 5 games)
$=\underline{\mathbf{P}(\text { Fischer wins } \cap \text { the match lasted no more than } 5 \text { games })}$
$=\frac{p}{p+q}$
(d) \mathbf{P} (Fischer wins at or before the 5th game \mid Fischer wins)
$=\frac{\mathbf{P}(\text { Fischer wins at or before the } 5 \text { th game } \cap \text { Fischer wins })}{\mathbf{P}(\text { Fischer wins })}$
$=\left(\frac{p\left[1-(1-p-q)^{5}\right]}{p+q}\right) /\left(\frac{p}{p+q}\right)$
$=1-(1-p-q)^{5}$
This part may be solved by observing that the events \{Fischer wins\} and \{the match lasted no more than 5 games \} are independent (we know this from parts (a) and (c)):
\mathbf{P} (the match lasted no more than 5 games \mid Fischer wins)
$=\mathbf{P}($ the match lasted no more than 5 games $)$
$=1-(1-p-q)^{5}$

