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1. The problem is simplified by looking at the fraction of the original stake that the gambler has at
any given moment. Because the expected value operation is linear, we can compute the expected
fraction of the original stake and multiply by the original stake to get the expected total fortune
(the original stake is a constant).

If the gambler has a at the beginning of a round, he bets a(2p − 1) on the round. If he wins,
he’ll have a + a(2p − 1) units. If he loses, he’ll have a − a(2p − 1) units. Thus at the end of the
round, he will have 2pa following a win, and 2(1 − p)a following a loss.

Thus, we see that winning multiplies the gambler’s fortune by 2p and losing multiplies it by
2(1 − p). Therefore, if he wins k times and loses m times, he will have (2p)k(2(1 − p))m times
his original fortune. We can also compute the probability of this event. Let Y be the number of
times the gambler wins in the first n gambles. Then Y has the binomial PMF:

pY (y) =

(

n

y

)

py(1 − p)n−y, y = 0, 1, . . . , n.

We can now calculate the expected fraction of the original stake that he has after n gambles. Let
Z be a random variable representing this fraction. We know that Z is related to Y via

Z = (2p)Y (2(1 − p))n−Y .

We will calculate the expected value of Z using the PMF of Y .

E[Z] =
n

∑

y=0

Z(y)pY (y) =
n

∑

y=0

(2p)y[2(1 − p)]n−y

(

n

y

)

py(1 − p)n−y

=
n

∑

y=0

2ypy2n−y(1 − p)n−y

(

n

y

)

py(1 − p)n−y

= 2n
n

∑

y=0

py(1 − p)n−y

(

n

y

)

py(1 − p)n−y

= 2n
n

∑

y=0

(

n

y

)

(

p2
)y [

(1 − p)2
]n−y

= 2n
(

p2 + (1 − p)2
)n

,

where the last equality follows using the generalized binomial formula

n
∑

k=0

(

n

k

)

akbn−k = (a + b)n.

Thus the gambler’s expected fortune is

2n
(

p2 + (1 − p)2
)n

x,

where x is the fortune at the beginning of the first round.
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An alternative method for solving the problem involves using iterated expectations. Let Xk be
the fortune after the kth gamble. Again, we use the fact that the expected fortune after the kth
gamble is

Xk = 2
(

p2 + (1 − p)2
)

Xk−1.

Therefore, using iterated expectations, the fortune after n gambles is

E[Xn] = E [E[Xn|Xn−1]]

= 2
(

p2 + (1 − p)2
)

E[Xn−1]

= 2
(

p2 + (1 − p)2
)

E [E[Xn−1|Xn−2]]

=
(

2
(

p2 + (1 − p)2
))2

E[Xn−2]

=
(

2
(

p2 + (1 − p)2
))2

E [E[Xn−2|Xn−3]]

=
(

2
(

p2 + (1 − p)2
))3

E[Xn−3]

= · · ·
=

(

2
(

p2 + (1 − p)2
))n

E[X]

= 2n
(

p2 + (1 − p)2
)n

x.

2. a) X, Y cannot be independent, since given X we know the value of Y to within two values, and
hence it is easy to show that:

f(x|y) 6= f(x).

b) Y, Z are independent because X is symmetric about around the ordinate (i.e. what we typically
call the Y -axis).
c)

fY Z(y, z) = fY |Z(y|z) · fZ(z)

= fX(x) · fZ(z)

and therefore:
fY (y) =

∑

I

fX(x) · fZ(z) = fX(x)

and therefore Y ∼ N [0, 1] as desired.
d) We want to show that cov(X, Y ) = 0. Since E[X] = E[Y ] = 0, we have:

cov(X, Y ) =

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xyfY |X(y|x) · fX(x)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xyfX(x)

1

2
(δ(x) + δ(−x)

=
1

2

∫ ∞

−∞
y[xfX(x) − xfX(x)]

= 0
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as required. The last equality follows from the fact that since X is a standard normal random
variable, fX(x) = fX(−x). Note that we have two dependent normal random variables X, Y that
have zero correlation. There is a small subtlety here. We know that if two random variables have
bivariate joint distribution, and are uncorrelated, then they are independent. However in this
case, we have two dependent normal random variables, whose correlation is zero. The difference
here is that the joint distribution is not bivariate normal.

3. (a) Let K be the random variable for the number of gaurds that you bumped into on your way.
K has a binomial distribution with parameters n = 78 and p = 1/2. Hence,

pK(k) =







(78
k

)

(

1
2

)k (

1
2

)78−k
k = 0, 1, . . . , 78

0 otherwise

Given that you bumped into k guards, random variable X is the sum of k independent
normal random variables, each with mean 1 and standard deviation of 1/2. Therefore,
conditioned on K = k, X is is a normal random variable with mean k and standard deviation
(1/2)

√
k:

fX|K(x|k) =
1√

2π 1
2

√
k
e
−

(x−k)2

1
2 k (1)

=

√

2

πk
e−

2(x−k)2

k (2)

The transform of X conditioned on K = k is therefore

E[esX |K = k] = e(ks2/8)+ks (3)

Using the total probability theorem, we get:

fX(x) =
78
∑

k=0

pK(k)fX|K(x|k) (4)

=
78
∑

k=0

(

78

k

)

(

1

2

)k (

1

2

)78−k
√

2

πk
e−

2(x−k)2

k (5)

Similarly, since we know the conditional transform of X given K = k, we can use the total
expectation theorem to get

MX(s) =
78
∑

k=0

pK(k)E[esX |K = k] (6)

=
78
∑

k=0

(

78

k

)

(

1

2

)k (

1

2

)78−k

e(ks2/8)+ks (7)

Thus X is a mixture of normal random variables, and its transform is a mixture of the
corresponding normal transforms. Note, however, that X itself is not normal!
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(b) Let K be the number of gaurds that you bump into. We can view X as the sum of K
independent normal random variables, each with mean 1 and standard deviation of 1/2.
Thus the transform associated with X can be found by replacing in the binomial transform
MK(s) = (1

2 + 1
2es)78 the occurrences of es by the normal transform corresponding to µ = 1

and σ = 1
2 . Thus,

MX(s) =

(

1

2
+

1

2

(

e
s
2

8
+s

))78

.
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