Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis (Spring 2006)

Tutorial 3
 March 2-3, 2006

1.

The joint PMF for random variables R and S is depicted in the sketch as follows: A point at (r, s) is labeled with $\mathbf{P}(R=r, S=$ s) for all pairs with positive probability. Let A denote the event $\{S \neq 3\}$.
(a) Prepare neat, fully-labeled sketches of $p_{S}(s)$ and $p_{S \mid A}(s)$.
(b) Let $Y=R-S$. Prepare a neat, fully-labeled sketch of $p_{R, Y}(r, y)$.
(c) Define the random variable $X=R+S$. Prepare a neat, fully-labeled plot of $p_{X \mid A}(x)$.
2. Chuck will go shopping for probability books for K hours. Here, K is a random variable and is equally likely to be $1,2,3$, or 4 . The number of books N that he buys is random and depends on how long he shops. We are told that

$$
p_{N \mid K}(n \mid k)=\frac{1}{k}, \quad \text { for } n=1, \ldots, k
$$

(a) Find the joint PMF of K and N.
(b) Find the marginal PMF of N.
(c) Find the conditional PMF of K given that $N=2$.
(d) We are now told that he bought at least 2 but no more than 3 books. Find the conditional mean and variance of K, given this piece of information.
(e) The cost of each book is a random variable with mean 3. What is the expected value of his total expenditure? Hint: Condition on events $N=1, \ldots, N=4$ and use the total expectation theorem.
3. Consider three random variables X, Y, and Z, associated with the same experiment. The random variable X is geometric with parameter p. If X is even, then Y and Z are equal to zero. If X is odd, (Y, Z) is uniformly distributed on the set $S=\{(0,0),(0,2),(2,0),(2,2)\}$. The figure below shows all the possible values for the triple (X, Y, Z) that have $X \leq 8$. (Note that the X axis starts at 1 and that a complete figure would extend indefinitely to the right.)

Massachusetts Institute of
 TECHNOLOGY
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)

(a) Find the joint PMF $p_{X, Y, Z}(x, y, z)$
(b) Answer with "yes" or "no" and one sentence of explanation:
(i) Are Y and Z independent?
(ii) Given that $Z=2$, are X and Y independent?
(iii) Given that $Z=0$, are X and Y independent?
(iv) Given that $Z=2$, are X and Z independent?
(c) Find $\operatorname{var}((Y+Z) \mid X=5)$.

