Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)

Problem Set 11:
 Topic: Markov Processes
 Due: May 12, 2006

1. At the Probability Coffee House of MIT, there is only one cashier. Due to the limited space, she allows only m customers to line before her at any time. If a customer finds there are m customers there including the one being served by the cashier, he will leave the Coffee House immdediately.
Every minute, exactly one of the following occurs:

- one new customer arrives with probability p;
- one existing customer leaves with probality $k q$, where k is the number of customers in the House; or
- no new customer arrives and no existing customer leaves with probability $1-p-k q$ if there is at least one customer in the House, and with probability $1-p$ otherwise.
(a) This problem can be modeled as a birth-death process. Define appropriate states and draw the transition probability graph.
(b) After the House has been open for a long time, you walk into the House. Calculate how many customers you expect to see in line.

2. Sam and Pat are playing foosball. When they begin, the score is $0-0$. To make things interesting, if the score ever becomes tied, it is instantly reset to $0-0$. Starting from any score, the probability that Sam gets the next point is $\frac{1}{3}$. The game stops when one player's score reaches 2 .
(a) Draw an appropriate Markov chain that describes the game.
(b) Identify all transient, recurrent, and periodic states.
(c) What is the probability that Pat wins?
