6.041SC Probabilistic Systems Analysis and Applied Probability, Fall 2013
Transcript — Tutorial: A Coin with Random Bias

Hi. In this problem, we're going to be dealing with a variation of the usual coin-flipping problem.
But in this case, the bias itself of the coin is going to be random. So you could think of it as, you
don't even know what the probability of heads for the coin is.

So as usual, we're still taking one coin and we're flipping it n times. But the difference here is
that the bias is because it was random variable Q. And we're told that the expectation of this bias
is some mu and that the variance of the bias is some sigma squared, which we're told is positive.
And what we're going to be asked is find a bunch of different expectations, covariances, and
variances.

And we'll see that this problem gives us some good exercise in a few concepts, a lot of iterated
expectations, which, again, tells you that when you take the expectation of a conditional
expectation, it's just the expectation of the inner random variable. The covariance of two random
variables is just the expectation of the product minus the product of the expectations. Law of
total variance is the expectation of a variance, of a conditional variance plus the variance of a
conditional expectation. And the last thing, of course, we're dealing with a bunch of Bernoulli
random variables, coin flips. So as a reminder, for a Bernoulli random variable, if you know
what the bias is, it's some known quantity p, then the expectation of the Bernoulii is just p, and
the variance of the Bernoulli is p times 1 minus p.

So let's get started. The problem tells us that we're going to define some random variables. So xi
IS going to be a Bernoulli random variable for the i coin flip.

So xi is going to be 1 if the i coin flip was heads and O if it was tails. And one very important

thing that the problem states is that conditional on Q, the random bias, so if we know what the
random bias is, then all the coin flips are independent. And that's going to be important for us
when we calculate all these values.

OK, so the first thing that we need to calculate is the expectation of each of these individual
Bernoulli random variables, xi. So how do we go about calculating what this is? Well, the
problem gives us a int. It tells us to try using the law of iterated expectations. But in order to use
it, you need to figure out what you need the condition on.

What this y? What takes place in y? And in this case, a good candidate for what you condition on
would be the bias, the Q that we're unsure about. So let's try doing that and see what we get.

So we write out the law of iterated expectations with Q. So now hopefully, we can simplify it
with this inter-conditional expectation is. Well, what is it really? It's saying, given what Q is,
what is the expectation of this Bernoulli random interval xi?



Well, we know that if we knew what the bias was, then the expectation is just the bias itself. But
in this case, the bias is random. But remember a conditional expectation is still a random
variable.

And so in this case, this actually just simplifies into Q. So whatever the bias is, the expectation is
just equal to the bias. And so that's what it tells us. And this part is easy because we're given that
the expectation of g is mu.

And then the problem also defines the random variable x. X is the total number of heads within
the n tosses. Or you can think of it as a sum of all these individual xi Bernoulli random variables.
And now, what can we do with this? Well we can remember that linearity of expectations allows
us to split up this sum. Expectation of a sum, we could split up into a sum of expectations.

So this is actually just expectation of x1 plus dot dot dot plus all the way to expectation of xn.
All right. And now, remember that we're flipping the same coin. We don't know what the bias is,
but for all the n flips, it's the same coin. And so each of these expectations of xi should be the
same, no matter what xi is.

And each one of them is mu. We already calculated that earlier. And there's 10 of them, so the
answer would be n times mu.

So let's move on to part B. Part B now asks us to find what the covariance is between xi and Xj.
And we have to be a little bit careful here because there are two different scenarios, one where i
and j are different indices, different tosses, and another where i and j are the same. So we have to
consider both of these cases separately.

Let's first do the case where x and i are different. So i does not equal j. In this case, we can just
apply the formula that we talked about in the beginning. So this covariance is just equal to the
expectation of xi times xj minus the expectation of xi times expectation of xj.

All right, so we actually know what these two are, right? Expectation of xi is mu. Expectation of
Xj is also mu. So this part is just mu squared. But we need to figure out what this expectation of
Xi times Xxj is.

Well, the expectation of xi times xj, we can again use the law of iterated expectations. So let's try
conditioning on cue again. And remember we said that this second part is just mu squared.

All right, well, how can we simplify this inner-conditional expectation? Well, we can use the fact
that the problem tells us that, conditioned on Q, the tosses are independent. So that means that,
conditioned on Q, xi and xj are independent.

And remember, when random variables are independent, the expectation of product, you could
simplify that to be the product of the expectations. And because we're in the condition world on
Q, you have to remember that it's going to be a product of two conditional expectations. So this
will be expectation of xi given Q times expectation of xj given Q minus mu squared still.



All right, now what is this? Well the expectation of xi given Q, we already argued earlier here
that it should just be Q. And then the same thing for xj. That should also be Q. So this is just
expectation of Q squared minus mu squared.

All right, now if we look at this, what is the expectation of Q squared minus mu squared? Well,
remember mu is just, we're told that mu is the expectation of Q. So what we have is the
expectation of Q squared minus the quantity expectation of Q squared.

And what is that, exactly? That is just the formula or the definition of what the variance of Q
should be. So this is, in fact, exactly equal to the variance of Q, which we're told is sigma
squared.

All right, so what we found is that for i not equal to j, the coherence of xi and Xxj is exactly equal
to sigma squared. And remember, we're told that sigma squared is positive. So what does that tell
us? That tells us that xi and xj, or i not equal to j, these two random variables are correlated.

And so, because they're correlated, they can't be independent. Remember, if two intervals are
independent, that means they're uncorrelated. But the converse isn't true. But if we do know that
two random variables are correlated, that means that they can't be independent.

And now let's finish this by considering the second case. The second case is when i actually does
equal j. And in that case, well, the covariance of xi and xi is just another way of writing the
variance of xi. So covariance, xi, Xi, it's just the variance of xi.

And what is that? That is just the expectation of xi squared minus expectation of xi quantity
squared. And again, we know what the second term is. The second term is expectation of xi
quantity squared. Expectation of xi we know from part A is just mu, right? So that's just second
term is just mu squared.

But what is the expectation of xi squared? Well, we can think about this a little bit more. And
you can realize that xi squared is actually exactly the same thing as just xi.

And this is just a special case because xi is a Bernoulli random variable. Because Bernoulli is
either 0 or 1. And if it's 0 and you square it, it's still 0. And if it's 1 and you square it, it's still 1.

So squaring it doesn't really doesn't actually change anything. It's exactly the same thing as the
original random variable. And so, because this is a Bernoulli random variable, this is exactly just
the expectation of xi.

And we said this part is just mu squared. So this is just expectation of xi, which we said was mu.
So the answer is just mu minus mu squared.

OK, so this completes part B. And the answer that we wanted was that in fact, xi and xj are in
fact not independent. Right.



So let's write down some facts that we'll want to remember. One of them is that expectation of xi
is mu. And we also want to remember what this covariance is.

The covariance of xi and xj is equal to sigma squared when i does not equal j. So we'll be using
these facts again later. And the variance of xi is equal to mu minus mu squared.

So now let's move on to the last part, part C, which asks us to calculate the variance of x in two
different ways. So the first way we'll do it is using the law of total variance. So the law of total
variance will tell us that we can write the variance of x as a sum of two different parts. So the
first is variance of x expectation of the variance of x conditioned on something plus the variance
of the initial expectation of x conditioned on something. And as you might have guessed, what
we're going to condition on is Q.

Let's calculate what these two things are. So let's do the two terms separately. What is the
expectation of the conditional variance of x given Q?

Well, what is-- this, we can write out x. Because x, remember, is just the sum of a bunch of these
Bernoulli random variables. And now what we'll do was, well, again, use the important fact that
the x's, we're told, are conditionally independent, conditional on Q.

And because they're independent, remember the variance of a sum is not the sum of the variance.
It's only the sum of the variance if the terms in the sum are independent. In this case, they are
conditionally independent given Q. So we can in fact split this up and write it as the variance of
x1 given Q plus all the way to the variance of xn given Q.

And in fact, all these are the same, right? So we just have n copies of the variance of, say, x1
given Q. Now, what is the variance of x1 given Q?

Well, x1 is just a Bernoulli random variable. But the difference is that for x, we don't know what
the bias or what the Q is. Because it's some random bias Q

But just like we said earlier in part A, when we talked about the expectation of x1 given Q, this is
actually just Q times 1 minus Q. Because if you knew what the bias were, it would be p times 1
minus p. So the bias times 1 minus the bias.

But you don't know what it is. But if you did, it would just be g. So what we do is we just plug in
Q, and you get Q times 1 minus 2.

All right, and now this is expectation of n. I can pull out the n. So it's n times the expectation of
Q minus Q squared, which is just n times expectation Q, we can use linearity of expectations
again, expectation of Q is mu.

And the expectation of Q 2 squared is, well, we can do that on the side. Expectation of Q squared
is the variance of Q plus expectation of Q quantity squared. So that's just sigma squared plus mu
squared. And so this is just going to be then minus sigma squared minus mu squared.



All right, so that's the first term. Now let's do the second term. The variance the conditional
expectation of x given Q. And again, what we can do is we can write x as the sum of all these
Xi's.

And now we can apply linearity of expectations. So we would get n times one of these
expectations. And remember, we said earlier the expectation of x1 given Q is just Q. So it's the
variance of n times Q.

And remember now, n is just-- it's not random. It's just some number. So when you pull it out of
a variance, you square it. So this is n squared times the variance of Q.

And the variance of Q we're given is sigma squared. So this is n squared times sigma squared. So
the final answer is just a combination of these two terms. This one and this one.

So let's write it out. The variance of x, then, is equal to-- we can combine terms a little bit. So the
first one, let's take the mus and we'll put them together. So it's n mu minus mu squared.

And then we have n squared times sigma squared from this term and minus n times sigma
squared from this term. So it would be n squared minus n times sigma squared, or n times n
minus 1 times sigma squared. So that is the final answer that we get for the variance of x.

And now, let's try doing it another way. So that's one way of doing it. That's using the law of
total expectations and conditioning on Q. Another way of finding the variance of x is to use the
formula involving covariances, right? And we can use that because x is actually a sum of
multiple random variables x1 through xn.

And the formula for this is, you have n variance terms plus all these other ones. Where i is not
equal to j, you have the covariance terms. And really, it's just, you can think of it as a double sum
of all pairs of xi and xj where if i and j happen just to be the same, that it simplifies to be just the
variance. Now, so we pulled theses n terms out because they are different than these because
they have a different value.

And now fortunately, we've already calculated what these values are in part B. So we can just
plug them them. All the variances are the same. And there's n of them, so we get n times the
variance of each one. The variance of each one we calculated already was mu minus mu squared.

And then, we have all the terms were i is not equal to j. Well, there are actually n squared minus
n of them. So because you can take any one of the n's to be the first to be i, any one of the n to be
J. So that gives you n squared pairs.

But then you have to subtract out all the ones where i and j are the same. And there are n of
them. So that leaves you with n squared minus n of these pairs where i is not equal to j.

And the coherence for this case where i is not equal to j, we also calculated in part B. That's just
sigma squared. All right, and now if we compare these two, we'll see that they are proportionally



exactly the same. So we've use two different methods to calculate the variance, one using this
summation and one using the law of total variance.

So what do we learn from this problem? Well, we saw that first of all, in order to find some
expectations, it's very useful to use law of iterated expectations. But the trick is to figure out
what you should condition on. And that's kind of an art that you learn through more practice.

But one good rule of thumb is, when you have kind of a hierarchy or layers of randomness where
one layer of randomness depends on the randomness of the layer above-- so in this case, whether
or not you get heads or tails depends on, that's random, but that depends on the randomness on
the level above, which was the random bias of the coin itself. So the rule of thumb is, when you
want to calculate the expectations for the layer where you're talking about heads or tails, it's
useful to condition on the layer above where that is, in this case, the random bias. Because once
you condition on the layer above, that makes the next level much simpler. Because you kind of
assume that you know what all the previous levels of randomness are, and that helps you
calculate what the expectation for this current level. And the rest of the problem was just kind of
going through exercises of actually applying the--



MIT OpenCourseWare
http://ocw.mit.edu

6.041SC Probabilistic Systems Analysis and Applied Probability
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu/terms
http://ocw.mit.edu



