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JOHN

TSITSIKLIS:

And we're going to continue today with our discussion of classical statistics. We'll start with a quick review of
what we discussed last time, and then talk about two topics that cover a lot of statistics that are happening in the
real world. So two basic methods. One is the method of linear regression, and the other one is the basic methods
and tools for how to do hypothesis testing.

OK, so these two are topics that any scientifically literate person should know something about. So we're going to
introduce the basic ideas and concepts involved. So in classical statistics we basically have essentially a family of
possible models about the world.

So the world is the random variable that we observe, and we have a model for it, but actually not just one model,
several candidate models. And each candidate model corresponds to a different value of a parameter theta that
we do not know. So in contrast to Bayesian statistics, this theta is assumed to be a constant that we do not know.
It is not modeled as a random variable, there's no probabilities associated with theta.

We only have probabilities about the X's. So in this context what is a reasonable way of choosing a value for the
parameter? One general approach is the maximum likelihood approach, which chooses the theta for which this
quantity is largest. So what does that mean intuitively? I'm trying to find the value of theta under which the data
that I observe are most likely to have occurred.

So is the thinking is essentially as follows. Let's say I have to choose between two choices of theta. Under this
theta the X that I observed would be very unlikely. Under that theta the X that I observed would have a decent
probability of occurring. So I chose the latter as my estimate of theta.

It's interesting to do the comparison with the Bayesian approach which we did discuss last time, in the Bayesian
approach we also maximize over theta, but we maximize a quantity in which the relation between X's and thetas
run the opposite way.

Here in the Bayesian world, Theta is a random variable. So it has a distribution. Once we observe the data, it has
a posterior distribution, and we find the value of Theta, which is most likely under the posterior distribution.

As we discussed last time when you do this maximization now the posterior distribution is given by this
expression. The denominator doesn't matter, and if you were to take a prior, which is flat-- that is a constant
independent of Theta, then that term would go away. And syntactically, at least, the two approaches look the
same.

So syntactically, or formally, maximum likelihood estimation is the same as Bayesian estimation in which you
assume a prior which is flat, so that all possible values of Theta are equally likely.

Philosophically, however, they're very different things. Here I'm picking the most likely value of Theta. Here I'm
picking the value of Theta under which the observed data would have been more likely to occur. So maximum
likelihood estimation is a general purpose method, so it's applied all over the place in many, many different types
of estimation problems.



There is a special kind of estimation problem in which you may forget about maximum likelihood estimation, and
come up with an estimate in a straightforward way. And this is the case where you're trying to estimate the
mean of the distribution of X, where X is a random variable. You observe several independent identically
distributed random variables X1 up to Xn. All of them have the same distribution as this X.

So they have a common mean. We do not know the mean we want to estimate it. What is more natural than just
taking the average of the values that we have observed? So you generate lots of X's, take the average of them,
and you expect that this is going to be a reasonable estimate of the true mean of that random variable. And
indeed we know from the weak law of large numbers that this estimate converges in probability to the true mean
of the random variable.

The other thing that we talked about last time is that besides giving a point estimate we may want to also give
an interval that tells us something about where we might believe theta to lie. And 1-alpha confidence interval is
in interval generated based on the data. So it's an interval from this value to that value. These values are written
with capital letters because they're random, because they depend on the data that we have seen. And this gives
us an interval, and we would like this interval to have the property that theta is inside that interval with high
probability.

So typically we would take 1-alpha to be a quantity such as 95% for example. In which case we have a 95%
confidence interval. As we discussed last time it's important to have the right interpretation of what's 95%
means.

What it does not mean is the following-- the unknown value has 95% percent probability of being in the interval
that we have generated. That's because the unknown value is not a random variable, it's a constant. Once we
generate the interval either it's inside or it's outside, but there's no probabilities involved.

Rather the probabilities are to be interpreted over the random interval itself. What a statement like this says is
that if I have a procedure for generating 95% confidence intervals, then whenever I use that procedure I'm going
to get a random interval, and it's going to have 95% probability of capturing the true value of theta.

So most of the time when I use this particular procedure for generating confidence intervals the true theta will
happen to lie inside that confidence interval with probability 95%. So the randomness in this statement is with
respect to my confidence interval, it's not with respect to theta, because theta is not random.

How does one construct confidence intervals? There's various ways of going about it, but in the case where we're
dealing with the estimation of the mean of a random variable doing this is straightforward using the central limit
theorem. Basically we take our estimated mean, that's the sample mean, and we take a symmetric interval to
the left and to the right of the sample mean.

And we choose the width of that interval by looking at the normal tables. So if this quantity, 1-alpha is 95%
percent, we're going to look at the 97.5 percentile of the normal distribution. Find the constant number that
corresponds to that value from the normal tables, and construct the confidence intervals according to this
formula. So that gives you a pretty mechanical way of going about constructing confidence intervals when you're
estimating the sample mean.



So constructing confidence intervals in this way involves an approximation. The approximation is the central limit
theorem. We are pretending that the sample mean is a normal random variable. Which is, more or less, right
when n is large. That's what the central limit theorem tells us.

And sometimes we may need to do some extra approximation work, because quite often we do not know the true
value of sigma. So we need to do some work either to estimate sigma from the data. So sigma is, of course, the
standard deviation of the X's. We may want to estimate it from the data, or we may have an upper bound on
sigma, and we just use that upper bound.

So now let's move on to a new topic. A lot of statistics in the real world are of the following flavor. So suppose
that X is the SAT score of a student in high school, and Y is the MIT GPA of that same student. So you expect that
there is a relation between these two. So you go and collect data for different students, and you record for a
typical student this would be their SAT score, that could be their MIT GPA. And you plot all this data on an (X,Y)
diagram.

Now it's reasonable to believe that there is some systematic relation between the two. So people who had higher
SAT scores in high school may have higher GPA in college. Well that may or may not be true. You want to
construct a model of this kind, and see to what extent a relation of this type is true.

So you might hypothesize that the real world is described by a model of this kind. That there is a linear relation
between the SAT score, and the college GPA. So it's a linear relation with some parameters, theta0 and theta1
that we do not know.

So we assume a linear relation for the data, and depending on the choices of theta0 and theta1 it could be a
different line through those data. Now we would like to find the best model of this kind to explain the data. Of
course there's going to be some randomness. So in general it's going to be impossible to find a line that goes
through all of the data points.

So let's try to find the best line that comes closest to explaining those data. And here's how we go about it.
Suppose we try some particular values of theta0 and theta1. These give us a certain line. Given that line, we can
make predictions.

For a student who had this x, the model that we have would predict that y would be this value. The actual y is
something else, and so this quantity is the error that our model would make in predicting the y of that particular
student. We would like to choose a line for which the predictions are as good as possible. And what do we mean
by as good as possible? As our criteria we're going to take the following.

We are going to look at the prediction error that our model makes for each particular student. Take the square of
that, and then add them up over all of our data points. So what we're looking at is the sum of this quantity
squared, that quantity squared, that quantity squared, and so on. We add all of these squares, and we would like
to find the line for which the sum of these squared prediction errors are as small as possible.

So that's the procedure. We have our data, the X's and the Y's. And we're going to find theta's the best model of
this type, the best possible model, by minimizing this sum of squared errors. So that's a method that one could
pull out of the hat and say OK, that's how I'm going to build my model. And it sounds pretty reasonable.



And it sounds pretty reasonable even if you don't know anything about probability. But does it have some
probabilistic justification? It turns out that yes, you can motivate this method with probabilistic considerations
under certain assumptions. So let's make a probabilistic model that's going to lead us to these particular way of
estimating the parameters.

So here's a probabilistic model. I pick a student who had a specific SAT score. And that could be done at random,
but also could be done in a systematic way. That is, I pick a student who had an SAT of 600, a student of 610 all
the way to 1,400 or 1,600, whatever the right number is. I pick all those students.

And I assume that for a student of this kind there's a true model that tells me that their GPA is going to be a
random variable, which is something predicted by their SAT score plus some randomness, some random noise.
And I model that random noise by independent normal random variables with 0 mean and a certain variance.

So this is a specific probabilistic model, and now I can think about doing maximum likelihood estimation for this
particular model. So to do maximum likelihood estimation here I need to write down the likelihood of the y's that
I have observed. What's the likelihood of the y's that I have observed?

Well, a particular w has a likelihood of the form e to the minus w squared over (2 sigma-squared). That's the
likelihood of a particular w. The probability, or the likelihood of observing a particular value of y, that's the same
as the likelihood that w takes a value of y minus this, minus that. So the likelihood of the y's is of this form. Think
of this as just being the w_i-squared.

So this is the density -- and if we have multiple data you multiply the likelihoods of the different y's. So you have
to write something like this. Since the w's are independent that means that the y's are also independent. The
likelihood of a y vector is the product of the likelihoods of the individual y's. The likelihood of every individual y is
of this form. Where w is y_i minus these two quantities.

So this is the form that the likelihood function is going to take under this particular model. And under the
maximum likelihood methodology we want to maximize this quantity with respect to theta0 and theta1. Now to
do this maximization you might as well consider the logarithm and maximize the logarithm, which is just the
exponent up here. Maximizing this exponent because we have a minus sign is the same as minimizing the
exponent without the minus sign. Sigma squared is a constant. So what you end up doing is minimizing this
quantity here, which is the same as what we had in our linear regression methods.

So in conclusion you might choose to do linear regression in this particular way, just because it looks reasonable
or plausible. Or you might interpret what you're doing as maximum likelihood estimation, in which you assume a
model of this kind where the noise terms are normal random variables with the same distribution -- independent
identically distributed.

So linear regression implicitly makes an assumption of this kind. It's doing maximum likelihood estimation as if
the world was really described by a model of this form, and with the W's being random variables. So this gives us
at least some justification that this particular approach to fitting lines to data is not so arbitrary, but it has a
sound footing.



OK so then once you accept this formulation as being a reasonable one what's the next step? The next step is to
see how to carry out this minimization. This is not a very difficult minimization to do. The way it's done is by
setting the derivatives of this expression to 0. Now because this is a quadratic function of theta0 and theta1--
when you take the derivatives with respect to theta0 and theta1-- you get linear functions of theta0 and theta1.
And you end up solving a system of linear equations in theta0 and theta1. And it turns out that there's very nice
and simple formulas for the optimal estimates of the parameters in terms of the data.

And the formulas are these ones. I said that these are nice and simple formulas. Let's see why. How can we
interpret them? So suppose that the world is described by a model of this kind, where the X's and Y's are random
variables. And where W is a noise term that's independent of X. So we're assuming that a linear model is indeed
true, but not exactly true. There's always some noise associated with any particular data point that we obtain.

So if a model of this kind is true, and the W's have 0 mean then we have that the expected value of Y would be
theta0 plus theta1 expected value of X. And because W has 0 mean there's no extra term. So in particular, theta0
would be equal to expected value of Y minus theta1 expected value of X.

So let's use this equation to try to come up with a reasonable estimate of theta0. I do not know the expected
value of Y, but I can estimate it. How do I estimate it? I look at the average of all the y's that I have obtained. so I
replace this, I estimate it with the average of the data I have seen.

Here, similarly with the X's. I might not know the expected value of X's, but I have data points for the x's. I look
at the average of all my data points, I come up with an estimate of this expectation. Now I don't know what
theta1 is, but my procedure is going to generate an estimate of theta1 called theta1 hat. And once I have this
estimate, then a reasonable person would estimate theta0 in this particular way.

So that's how my estimate of theta0 is going to be constructed. It's this formula here. We have not yet addressed
the harder question, which is how to estimate theta1 in the first place. So to estimate theta0 I assumed that I
already had an estimate for a theta1.

OK, the right formula for the estimate of theta1 happens to be this one. It looks messy, but let's try to interpret it.
What I'm going to do is I'm going to take this model for simplicity let's assume that they're the random variables
have 0 means. And see how we might estimate how we might try to estimate theta1.

Let's multiply both sides of this equation by X. So we get Y times X equals theta0 plus theta0 times X plus theta1
times X-squared, plus X times W. And now take expectations of both sides. If I have 0 mean random variables the
expected value of Y times X is just the covariance of X with Y.

I have assumed that my random variables have 0 means, so the expectation of this is 0. This one is going to be
the variance of X, so I have theta1 times variance of X. And since I'm assuming that my random variables have 0
mean, and I'm also assuming that W is independent of X this last term also has 0 mean.

So under such a probabilistic model this equation is true. If we knew the variance and the covariance then we
would know the value of theta1. But we only have data, we do not necessarily know the variance and the
covariance, but we can estimate it.

What's a reasonable estimate of the variance? The reasonable estimate of the variance is this quantity here
divided by n, and the reasonable estimate of the covariance is that numerator divided by n.



So this is my estimate of the mean. I'm looking at the squared distances from the mean, and I average them over
lots and lots of data. This is the most reasonable way of estimating the variance of our distribution.

And similarly the expected value of this quantity is the covariance of X with Y, and then we have lots and lots of
data points. This quantity here is going to be a very good estimate of the covariance. So basically what this
formula does is-- one way of thinking about it-- is that it starts from this relation which is true exactly, but
estimates the covariance and the variance on the basis of the data, and then using these estimates to come up
with an estimate of theta1.

So this gives us a probabilistic interpretation of the formulas that we have for the way that the estimates are
constructed. If you're willing to assume that this is the true model of the world, the structure of the true model of
the world, except that you do not know means and covariances, and variances. Then this is a natural way of
estimating those unknown parameters.

All right, so we have a closed-form formula, we can apply it whenever we have data. Now linear regression is a
subject on which there are whole courses, and whole books that are given. And the reason for that is that there's
a lot more that you can bring into the topic, and many ways that you can elaborate on the simple solution that
we got for the case of two parameters and only two random variables.

So let me give you a little bit of flavor of what are the topics that come up when you start looking into linear
regression in more depth. So in our discussions so far we made the linear model in which we're trying to explain
the values of one variable in terms of the values of another variable. We're trying to explain GPAs in terms of SAT
scores, or we're trying to predict GPAs in terms of SAT scores.

But maybe your GPA is affected by several factors. For example maybe your GPA is affected by your SAT score,
also the income of your family, the years of education of your grandmother, and many other factors like that. So
you might write down a model in which I believe that GPA has a relation, which is a linear function of all these
other variables that I mentioned. So perhaps you have a theory of what determines performance at college, and
you want to build a model of that type.

How do we go about in this case? Well, again we collect the data points. We look at the i-th student, who has a
college GPA. We record their SAT score, their family income, and grandmother's years of education. So this is one
data point that is for one particular student.

We postulate the model of this form. For the i-th student this would be the mistake that our model makes if we
have chosen specific values for those parameters. And then we go and choose the parameters that are going to
give us, again, the smallest possible sum of squared errors. So philosophically it's exactly the same as what we
were discussing before, except that now we're including multiple explanatory variables in our model instead of a
single explanatory variable.

So that's the formulation. What do you do next? Well, to do this minimization you're going to take derivatives
once you have your data, you have a function of these three parameters. You take the derivative with respect to
the parameter, set the derivative equal to 0, you get the system of linear equations. You throw that system of
linear equations to the computer, and you get numerical values for the optimal parameters.



There are no nice closed-form formulas of the type that we had in the previous slide when you're dealing with
multiple variables. Unless you're willing to go into matrix notation. In that case you can again write down closed-
form formulas, but they will be a little less intuitive than what we had before. But the moral of the story is that
numerically this is a procedure that's very easy. It's a problem, an optimization problem that the computer can
solve for you. And it can solve it for you very quickly. Because all that it involves is solving a system of linear
equations.

Now when you choose your explanatory variables you may have some choices. One person may think that your
GPA a has something to do with your SAT score. Some other person may think that your GPA has something to do
with the square of your SAT score. And that other person may want to try to build a model of this kind.

Now when would you want to do this? ? Suppose that the data that you have looks like this. If the data looks like
this then you might be tempted to say well a linear model does not look right, but maybe a quadratic model will
give me a better fit for the data. So if you want to fit a quadratic model to the data then what you do is you take
X-squared as your explanatory variable instead of X, and you build a model of this kind.

There's nothing really different in models of this kind compared to models of that kind. They are still linear
models because we have theta's showing up in a linear fashion. What you take as your explanatory variables,
whether it's X, whether it's X-squared, or whether it's some other function that you chose. Some general function
h of X, doesn't make a difference. So think of you h of X as being your new X. So you can formulate the problem
exactly the same way, except that instead of using X's you choose h of X's.

So it's basically a question do I want to build a model that explains Y's based on the values of X, or do I want to
build a model that explains Y's on the basis of the values of h of X. Which is the right value to use? And with this
picture here, we see that it can make a difference. A linear model in X might be a poor fit, but a quadratic model
might give us a better fit.

So this brings to the topic of how to choose your functions h of X if you're dealing with a real world problem. So in
a real world problem you're just given X's and Y's. And you have the freedom of building models of any kind you
want. You have the freedom of choosing a function h of X of any type that you want.

So this turns out to be a quite difficult and tricky topic. Because you may be tempted to overdo it. For example, I
got my 10 data points, and I could say OK, I'm going to choose an h of X. I'm going to choose h of X and actually
multiple h's of X to do a multiple linear regression in which I'm going to build a model that's uses a 10th degree
polynomial.

If I choose to fit my data with a 10th degree polynomial I'm going to fit my data perfectly, but I may obtain a
model is does something like this, and goes through all my data points. So I can make my prediction errors
extremely small if I use lots of parameters, and if I choose my h functions appropriately. But clearly this would be
garbage.

If you get those data points, and you say here's my model that explains them. That has a polynomial going up
and down, then you're probably doing something wrong. So choosing how complicated those functions, the h's,
should be. And how many explanatory variables to use is a very delicate and deep topic on which there's deep
theory that tells you what you should do, and what you shouldn't do.



But the main thing that one should avoid doing is having too many parameters in your model when you have too
few data. So if you only have 10 data points, you shouldn't have 10 free parameters. With 10 free parameters
you will be able to fit your data perfectly, but you wouldn't be able to really rely on the results that you are
seeing.

OK, now in practice, when people run linear regressions they do not just give point estimates for the parameters
theta. But similar to what we did for the case of estimating the mean of a random variable you might want to give
confidence intervals that sort of tell you how much randomness there is when you estimate each one of the
particular parameters.

There are formulas for building confidence intervals for the estimates of the theta's. We're not going to look at
them, it would take too much time. Also you might want to estimate the variance in the noise that you have in
your model. That is if you are pretending that your true model is of the kind we were discussing before, namely Y
equals theta1 times X plus W, and W has a variance sigma squared. You might want to estimate this, because it
tells you something about the model, and this is called standard error.

It puts a limit on how good predictions your model can make. Even if you have the correct theta0 and theta1, and
somebody tells you X you can make a prediction about Y, but that prediction will not be accurate. Because
there's this additional randomness. And if that additional randomness is big, then your predictions will also have
a substantial error in them.

There's another quantity that gets reported usually. This is part of the computer output that you get when you
use a statistical package which is called R-square. And its a measure of the explanatory power of the model that
you have built linear regression. Using linear regression. Instead of defining R-square exactly, let me give you a
sort of analogous quantity that's involved.

After you do your linear regression you can look at the following quantity. You look at the variance of Y, which is
something that you can estimate from data. This is how much randomness there is in Y. And compare it with the
randomness that you have in Y, but conditioned on X. So this quantity tells me if I knew X how much randomness
would there still be in my Y?

So if I know X, I have more information, so Y is more constrained. There's less randomness in Y. This is the
randomness in Y if I don't know anything about X.

So naturally this quantity would be less than 1, and if this quantity is small it would mean that whenever I know X
then Y is very well known. Which essentially tells me that knowing x allows me to make very good predictions
about Y. Knowing X means that I'm explaining away most of the randomness in Y.

So if you read a statistical study that uses linear regression you might encounter statements of the form 60% of a
student's GPA is explained by the family income. If you read the statements of this kind it's really refers to
quantities of this kind. Out of the total variance in Y, how much variance is left after we build our model?



So if only 40% of the variance of Y is left after we build our model, that means that X explains 60% of the
variations in Y's. So the idea is that randomness in Y is caused by multiple sources. Our explanatory variable and
random noise. And we ask the question what percentage of the total randomness in Y is explained by variations
in the X parameter? And how much of the total randomness in Y is attributed just to random effects? So if you
have a model that explains most of the variation in Y then you can think that you have a good model that tells
you something useful about the real world.

Now there's lots of things that can go wrong when you use linear regression, and there's many pitfalls. One pitfall
happens when you have this situation that's called heteroskedacisity. So suppose your data are of this kind. So
what's happening here? You seem to have a linear model, but when X is small you have a very good model. So
this means that W has a small variance when X is here.

On the other hand, when X is there you have a lot of randomness. This would be a situation in which the W's are
not identically distributed, but the variance of the W's, of the noise, has something to do with the X's. So with
different regions of our x-space we have different amounts of noise. What will go wrong in this situation? Since
we're trying to minimize sum of squared errors, we're really paying attention to the biggest errors. Which will
mean that we are going to pay attention to these data points, because that's where the big errors are going to be.
So the linear regression formulas will end up building a model based on these data, which are the most noisy
ones. Instead of those data that are nicely stacked in order.

Clearly that's not to the right thing to do. So you need to change something, and use the fact that the variance of
W changes with the X's, and there are ways of dealing with it. It's something that one needs to be careful about.
Another possibility of getting into trouble is if you're using multiple explanatory variables that are very closely
related to each other.

So for example, suppose that I tried to predict your GPA by looking at your SAT the first time that you took it plus
your SAT the second time that you took your SATs. I'm assuming that almost everyone takes the SAT more than
once. So suppose that you had a model of this kind.

Well, SAT on your first try and SAT on your second try are very likely to be fairly close. And you could think of
coming up with estimates in which this is ignored. And you build a model based on this, or an alternative model
in which this term is ignored, and you make predictions based on the second SAT. And both models are likely to
be essentially as good as the other one, because these two quantities are essentially the same.

So in that case, your theta's that you estimate are going to be very sensitive to little details of the data. You
change your data, you have your data, and your data tell you that this coefficient is big and that coefficient is
small. You change your data just a tiny bit, and your theta's would drastically change. So this is a case in which
you have multiple explanatory variables, but they're redundant in the sense that they're very closely related to
each other, and perhaps with a linear relation. So one must be careful about the situation, and do special tests to
make sure that this doesn't happen.

Finally the biggest and most common blunder is that you run your linear regression, you get your linear model,
and then you say oh, OK. Y is caused by X according to this particular formula. Well, all that we did was to
identify a linear relation between X and Y. This doesn't tell us anything. Whether it's Y that causes X, or whether
it's X that causes Y, or maybe both X and Y are caused by some other variable that we didn't think about.



So building a good linear model that has small errors does not tell us anything about causal relations between the
two variables. It only tells us that there's a close association between the two variables. If you know one you can
make predictions about the other. But it doesn't tell you anything about the underlying physics, that there's some
physical mechanism that introduces the relation between those variables.

OK, that's it about linear regression. Let us start the next topic, which is hypothesis testing. And we're going to
continue with it next time.

So here, instead of trying to estimate continuous parameters, we have two alternative hypotheses about the
distribution of the X random variable. So for example our random variable could be either distributed according
to this distribution, under H0, or it might be distributed according to this distribution under H1. And we want to
make a decision which distribution is the correct one?

So we're given those two distributions, and some common terminologies that one of them is the null hypothesis--
sort of the default hypothesis, and we have some alternative hypotheses-- and we want to check whether this
one is true, or that one is true. So you obtain a data point, and you want to make a decision. In this picture what
would a reasonable person do to make a decision? They would probably choose a certain threshold, Xi, and
decide that H1 is true if your data falls in this interval. And decide that H0 is true if you fall on the side. So that
would be a reasonable way of approaching the problem.

More generally you take the set of all possible X's, and you divide the set of possible X's into two regions. One is
the rejection region, in which you decide H1, or you reject H0. And the complement of that region is where you
decide H0.

So this is the x-space of your data. In this example here, x was one-dimensional. But in general X is going to be a
vector, where all the possible data vectors that you can get, they're divided into two types. If it falls in this set
you'd make one decision. If it falls in that set, you make the other decision. OK, so how would you characterize
the performance of the particular way of making a decision?

Suppose I chose my threshold. I may make mistakes of two possible types. Perhaps H0 is true, but my data
happens to fall here. In which case I make a mistake, and this would be a false rejection of H0. If my data falls
here I reject H0. I decide H1. Whereas H0 was true. The probability of this happening? Let's call it alpha.

But there's another kind of error that can be made. Suppose that H1 was true, but by accident my data happens
to falls on that side. Then I'm going to make an error again. I'm going to decide H0 even though H1 was true.
How likely is this to occur? This would be the area under this curve here. And that's the other type of error than
can be made, and beta is the probability of this particular type of error.

Both of these are errors. Alpha is the probability of error of one kind. Beta is the probability of an error of the
other kind. You would like the probabilities of error to be small. So you would like to make both alpha and beta as
small as possible.

Unfortunately that's not possible, there's a trade-off. If I go to my threshold it this way, then alpha become
smaller, but beta becomes bigger. So there's a trade-off. If I make my rejection region smaller one kind of error is
less likely, but the other kind of error becomes more likely. So we got this trade-off.



So what do we do about it? How do we move systematically? How do we come up with rejection regions? Well,
what the theory basically tells you is it tells you how you should create those regions. But it doesn't tell you
exactly how. It tells you the general shape of those regions.

For example here, the theory who tells us that the right thing to do would be to put the threshold and make
decisions one way to the right, one way to the left. But it might not necessarily tell us where to put the threshold.
Still, it's useful enough to know that the way to make a good decision would be in terms of a particular threshold.

Let me make this more specific. We can take our inspiration from the solution of the hypothesis testing problem
that we had in the Bayesian case. In the Bayesian case we just pick the hypothesis which is more likely given the
data. The produced posterior probabilities using Bayesian rule, they're written this way.

And this term is the same as that term. They cancel out, then let me collect terms here and there. I get an
expression here. I think the version you have in your handout is the correct one. The one on the slide was not the
correct one, so I'm fixing it here.

OK, so this is the form of how you make decisions in the Bayesian case. What you do in the Bayesian case, you
calculate this ratio. Let's call it the likelihood ratio. And compare that ratio to a threshold. And the threshold that
you should be using in the Bayesian case has something to do with the prior probabilities of the two hypotheses.

In the non-Bayesian case we do not have prior probabilities, so we do not know how to set this threshold. But
we're going to do is we're going to keep this particular structure anyway, and maybe use some other
considerations to pick the threshold. So we're going to use a likelihood ratio test, that's how it's called in which
we calculate a quantity of this kind that we call the likelihood, and compare it with a threshold.

So what's the interpretation of this likelihood? We ask-- the X's that I have observed, how likely were they to
occur if H1 was true? And how likely were they to occur if H0 was true? This ratio could be big if my data are
plausible they might occur under H1. But they're very implausible, extremely unlikely to occur under H0.

Then my thinking would be well the data that I saw are extremely unlikely to have occurred under H0. So H0 is
probably not true. I'm going to go for H1 and choose H1. So when this ratio is big it tells us that the data that
we're seeing are better explained if we assume H1 to be true rather than H0 to be true. So I calculate this
quantity, compare it with a threshold, and that's how I make my decision.

So in this particular picture, for example the way it would go would be the likelihood ratio in this picture goes
monotonically with my X. So comparing the likelihood ratio to the threshold would be the same as comparing my
x to the threshold, and we've got the question of how to choose the threshold.

The way that the threshold is chosen is usually done by fixing one of the two probabilities of error. That is, I say,
that I want my error of one particular type to be a given number, so I fix this alpha. And then I try to find where
my threshold should be. So that this probability theta, probability out there, is just equal to alpha.

And then the other probability of error, beta, will be whatever it turns out to be. So somebody picks alpha ahead
of time. Based on the probability of a false rejection based on alpha, I find where my threshold is going to be. I
choose my threshold, and that determines subsequently the value of beta. So we're going to continue with this
story next time, and we'll stop here.


