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InClass Problems Week 8, Wed. 

Problem 1. We begin with two large glasses. The first glass contains a pint of water, and the 
second contains a pint of wine. We pour 1/3 of a pint from the first glass into the second, stir up 
the wine/water mixture in the second glass, and then pour 1/3 of a pint of the mix back into the 
first glass and repeat this pouring backandforth process a total of n times. 

(a) Describe a closed form formula for the amount of wine in the first glass after n backandforth 
pourings. 

(b) What is the limit of the amount of wine in each glass as n approaches infinity? 

Problem 2. Suppose you were about to enter college today and a college loan officer offered you 
the following deal: $25,000 at the start of each year for four years to pay for your college tuition 
and an option of choosing one of the following repayment plans: 

Plan A: Wait four years, then repay $20,000 at the start of each year for the next ten years. 

Plan B: Wait five years, then repay $30,000 at the start of each year for the next five years. 

Suppose the annual interest rate paid by banks is 7% and does not change in the future. 

(a) Assuming that it’s no hardship for you to meet the terms of either payback plan, which one 
is a better deal? (You will need a calculator.) 

(b) What is the loan officer’s effective profit (in today’s dollars) on the loan? 
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Problem 3. Riemann’s Zeta Function ζ(k) is defined to be the infinite summation: � 11 1
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Below is a proof that � 
(ζ(k) − 1) = 1 

k≥2 

Justify each line of the proof. (P.S. The purpose of this exercise is to highlight some of the rules for 
manipulating series. Don’t worry about the significance of this identity.) 
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