In-Class Problems Week 8, Wed.

Problem 1. We begin with two large glasses. The first glass contains a pint of water, and the second contains a pint of wine. We pour $1 / 3$ of a pint from the first glass into the second, stir up the wine/water mixture in the second glass, and then pour $1 / 3$ of a pint of the mix back into the first glass and repeat this pouring back-and-forth process a total of n times.
(a) Describe a closed form formula for the amount of wine in the first glass after n back-and-forth pourings.
(b) What is the limit of the amount of wine in each glass as n approaches infinity?

Problem 2. Suppose you were about to enter college today and a college loan officer offered you the following deal: $\$ 25,000$ at the start of each year for four years to pay for your college tuition and an option of choosing one of the following repayment plans:

Plan A: Wait four years, then repay $\$ 20,000$ at the start of each year for the next ten years.
Plan B: Wait five years, then repay $\$ 30,000$ at the start of each year for the next five years.
Suppose the annual interest rate paid by banks is 7% and does not change in the future.
(a) Assuming that it's no hardship for you to meet the terms of either payback plan, which one is a better deal? (You will need a calculator.)
(b) What is the loan officer's effective profit (in today's dollars) on the loan?

[^0]Problem 3. Riemann's Zeta Function $\zeta(k)$ is defined to be the infinite summation:

$$
1+\frac{1}{2^{k}}+\frac{1}{3^{k}} \cdots=\sum_{j \geq 1} \frac{1}{j^{k}}
$$

Below is a proof that

$$
\sum_{k \geq 2}(\zeta(k)-1)=1
$$

Justify each line of the proof. (P.S. The purpose of this exercise is to highlight some of the rules for manipulating series. Don't worry about the significance of this identity.)

$$
\begin{align*}
\sum_{k \geq 2}(\zeta(k)-1) & =\sum_{k \geq 2}\left[\left(\sum_{j \geq 1} \frac{1}{j^{k}}\right)-1\right] \tag{1}\\
& =\sum_{k \geq 2} \sum_{j \geq 2} \frac{1}{j^{k}} \tag{2}\\
& =\sum_{j \geq 2} \sum_{k \geq 2} \frac{1}{j^{k}} \tag{3}\\
& =\sum_{j \geq 2} \frac{1}{j^{2}} \sum_{k \geq 0} \frac{1}{j^{k}} \tag{4}\\
& =\sum_{j \geq 2} \frac{1}{j^{2}} \cdot \frac{1}{1-1 / j} \tag{5}\\
& =\sum_{j \geq 2} \frac{1}{j(j-1)} \tag{6}\\
& =\lim _{n \rightarrow \infty} \sum_{j=2}^{n} \frac{1}{j(j-1)} \tag{7}\\
& =\lim _{n \rightarrow \infty} \sum_{j=2}^{n} \frac{1}{j-1}-\frac{1}{j} \tag{8}\\
& =\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \tag{9}\\
& =1 \tag{10}
\end{align*}
$$

[^0]: Copyright © 2005, Prof. Albert R. Meyer.

