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Sums, Products & Asymptotics 

1 Closed Forms and Approximations 

Sums and products arise regularly in the analysis of algorithms and in other technical areas such 
as finance and probabilistic systems. We’ve already seen that 

n� n(n + 1) 
i = 

2 
. 

i=1 

Having a simple closed form expression such as n(n+1)/2 makes the sum a lot easier to understand 
and evaluate. We proved by induction that this formula is correct, but not where it came from. 
In Section 4, we’ll discuss ways to find such closed forms. Even when there are no closed forms 
exactly equal to a sum, we may still be able to find a closed form that approximates a sum with 
useful accuracy. 

The product we focus on in these notes is the familiar factorial: 

n

n! ::= 1 2 · · · (n − 1) · n = i. · 
i=1 

We’ll describe a closed form approximation for it called Stirling’s Formula. 

Finally, when there isn’t a good closed form approximation for some expression, there may still be 
a closed form that characterizes its growth rate. We’ll introduce asymptotic notation, such as “big 
Oh”, to describe growth rates. 

2 The Value of an Annuity 

Would you prefer a million dollars today or $50,000 a year for the rest of your life? On the one 
hand, instant gratification is nice. On the other hand, the total dollars received at $50K per year is 
much larger if you live long enough. 

Formally, this is a question about the value of an annuity. An annuity is a financial instrument that 
pays out a fixed amount of money at the beginning of every year for some specified number of 
years. In particular, an n­year, m­payment annuity pays m dollars at the start of each year for n 
years. In some cases, n is finite, but not always. Examples include lottery payouts, student loans, 
and home mortgages. There are even Wall Street people who specialize in trading annuities. 
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A key question is what an annuity is worth. For example, lotteries often pay out jackpots over 
many years. Intuitively, $50, 000 a year for 20 years ought to be worth less than a million dollars 
right now. If you had all the cash right away, you could invest it and begin collecting interest. But 
what if the choice were between $50, 000 a year for 20 years and a half million dollars today? Now 
it is not clear which option is better. 

In order to answer such questions, we need to know what a dollar paid out in the future is worth 
today. To model this, let’s assume that money can be invested at a fixed annual interest rate p. 
We’ll assume an 8% rate1 for the rest of the discussion. 

Here is why the interest rate p matters. Ten dollars invested today at interest rate p will become 
(1+ p) 10 = 10.80 dollars in a year, (1+ p)2 10 ≈ 11.66 dollars in two years, and so forth. Looked · · 
at another way, ten dollars paid out a year from now are only really worth 1/(1 + p) 10 ≈ 9.26· 
dollars today. The reason is that if we had the $9.26 today, we could invest it and would have 
$10.00 in a year anyway. Therefore, p determines the value of money paid out in the future. 

2.1 The Future Value of Money 

Our goal is to determine the value of an n­year, m­payment annuity. The first payment of m 
dollars is truly worth m dollars. But the second payment a year later is worth only m/(1 + p) 
dollars. Similarly, the third payment is worth m/(1 + p)2, and the n­th payment is worth only 
m/(1 + p)n−1 . The total value V of the annuity is equal to the sum of the payment values. This 
gives: 

n� m 
V = 

(1 + p)i−1 
. 

i=1 

To compute the real value of the annuity, we need to evaluate this sum. One way is to plug 
in m, n, and p, compute each term explicitly, and then add them up. However, this sum has a 
special closed form that makes the job easier. (The phrase “closed form” refers to a mathematical 
expression without any summation or product notation.) First, lets make the summation prettier 
with some substitutions. 

n� m 
V = 

(1 + p)i−1 
i=1 

n−1� m 
= 

(1 + p)j 
(substitute j = i − 1) 

j=0 

n−1� 1 
= m xj (substitute x = ).

1 + p
j=0 

The goal of these substitutions is to put the summation into a special form so that we can bash it 
with a theorem given in the next section. 

1U.S. interest rates have dropped steadily for several years, and ordinary bank deposits now earn around 3%. But 
just a few years ago the rate was 8%; this rate makes some of our examples a little more dramatic. The rate has been as 
high as 17% in the past twenty years. 

In Japan, the standard interest rate is near zero%, and on a few ocasions in the past few years has even been slightly 
negative. It’s a mystery to U.S. economists why the Japanese populace keeps any money in their banks. 
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2.2 Geometric Sums 

Theorem 2.1. For all n ≥ 1 and all x = 1, 

� nn−1
i 1− x

x =
1− x

. 
i=0 

The summation in this theorem is a geometric sum. The distinguishing feature of a geometric sum 
is that each of the terms 

2 31, x, x , x , . . . , x n−1 . 

in the sum is a constant times the one before; in this case, the constant is x. The theorem gives a 
closed form for a geometric sum that starts with 1. 

We already saw one proof of this theorem in our lectures on induction. As is often the case, the 
proof by induction gives no hint about how the formula was found in the first place. Here is a 
more insightful derivation. The trick is to let S be the value of the sum and then observe what 
−xS is: 

S = 1 +x +x2 +x3 +xn−1 

−xS = 2 3 
+ · · · 

−xn−1 − x .−x −x −x − · · · n 

Adding these two equations gives: 

nS − xS = 1− x , 

so 

n1− x
S =

1− x
. 

We’ll say more about finding (as opposed to just proving) summation formulas later. 

2.3 Return of the Annuity Problem 

Now we can solve the annuity pricing problem. The value of an annuity that pays m dollars at 
the start of each year for n years is computed as follows: 

n−1

V = m xj 

j=0 

n1− x
= m 

1− x 
1 n1− (1+p)

= m 11− 1+p 

11 + p− ( )n−1 
1+p= m . 

p 

The first line is a restatement of the summation we obtained earlier for the value of an annuity.

The second line uses the closed form formula for a geometric sum. In the third line, we undo
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the earlier substitution x = 1/(1 + p). In the final step, both the numerator and denominator are 
multiplied by 1 + p to simplify the expression. 

The resulting formula is much easier to use than a summation with dozens of terms. For example, 
what is the real value of a winning lottery ticket that pays $50, 000 per year for 20 years? Plugging 
in m = $50, 000, n = 20, and p = 0.08 gives V ≈ $530, 180. Because payments are deferred, the 
million dollar lottery is really only worth about a half million dollars! This is a good trick for the 
lottery advertisers! 

2.4 Infinite Geometric Series 

The question at the beginning of this section was whether you would prefer a million dollars 
today or $50, 000 a year for the rest of your life. Of course, this depends on how long you live, so 
optimistically assume that the second option is to receive $50, 000 a year forever. This sounds like 
infinite money! 

We can compute the value of an annuity with an infinite number of payments by taking the limit 
of our geometric sum in Theorem 2.1 as n tends to infinity. This one is worth remembering! 

Theorem 2.2. If |x| < 1, then � 1∞
i x =

1− x
. 

i=0 

Proof. 

n−1∞
i	 i x = lim x 

i=0 
n→∞ 

i=0 
n 

=	 lim 
1− x

n→∞ 1− x 
1 

= .
1− x 

The first equality follows from the definition of an infinite summation. In the second line, we 
apply the formula for the sum of an n­term geometric sum given in Theorem 2.1. The final line 
follows by evaluating the limit; the xn term vanishes since we assumed that |x| < 1. 

In our annuity problem, x = 1/(1 + p) < 1, so the theorem applies. Substituting for x, we get an 
annuity value of 

1 
V = m · 

1− x 
1 

= m · 
1− 1/(1 + p) 

1 + p
= m · 

(1 + p)− 1 
1 + p

= m .· 
p 
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Plugging in m = $50, 000 and p = 0.08 gives only $675, 000. Amazingly, a million dollars today is 
worth much more than $50, 000 paid every year forever! Then again, if we had a million dollars 
today in the bank earning 8% interest, we could take out and spend $80, 000 a year forever. So the 
answer makes some sense. 

2.5 Examples 

We now have closed form formulas for geometric sums and series. Some examples are given 
below. In each case, the solution follows immediately from either Theorem 2.1 (for finite sums) or 
Theorem 2.2 (for infinite series). 

1 + 1/2 + 1/4 + 1/8 + · · · = 
∞� 

i=0 

(1/2)i = 
1 

1− (1/2) 
= 2 (1) 

0.999999999 . . . = 0.9 
∞� 

i=0 

(1/10)i = 0.9 
1 

1− 1/10 
= 0.9 

10 
9 

= 1 (2) 

1− 1/2 + 1/4− 1/8 + · · · = 
∞� 

i=0 

(−1/2)i = 
1 

1− (−1/2) 
= 2/3 (3) 

1 + 2 + 4 + 8 + · · ·+ 2n−1 = 
n−1� 

i=0 

2i = 
1− 2n 

1− 2 
= 2n − 1 (4) 

1 + 3 + 9 + 27 + · · ·+ 3n−1 = 
n−1� 

i=0 

3i = 
1− 3n 

1− 3 
= 

3n − 1 
2 

(5) 

If the terms in a geometric sum or series grow smaller, as in equation (1), then the sum is said to 
be geometrically decreasing. If the terms in a geometric sum grow progressively larger, as in (4) and 
(5), then the sum is said to be geometrically increasing. 

Here is a good rule of thumb: a geometric sum or series is approximately equal to the term with greatest 
absolute value. In equations (1) and (3), the largest term is equal to 1 and the sums are 2 and 2/3, 
both relatively close to 1. In equation (4), the sum is about twice the largest term. In the final 
equation (5), the largest term is 3n−1 and the sum is (3n − 1)/2, which is only about a factor of 1.5 
greater. 

2.6 Related Sums 

We now know all about geometric sums. But in practice one often encounters sums that cannot be 
itransformed by simple variable substitutions to the form x . 

A non­obvious, but useful way to obtain new summation formulas from old is by differentiating 
or integrating with respect to x. As an example, consider the following sum: 

n
nixi = x + 2x 2 + 3x 3 + + nx· · ·

i=1 

This is not a geometric sum, since the ratio between successive terms is not constant. Our formula

for the sum of a geometric sum cannot be directly applied. But suppose that we differentiate that
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formula: 
n	 n+1d � 

i d 1− x
x = 

dx dx 1− x 
i=0


n
� 
ixi−1 = 

−(n + 1)xn(1	− x)− (−1)(1 − xn+1) 
(1 − x)2 

i=1 

n+1−(n + 1)xn + (n + 1)xn+1 + 1− x
= 

(1 − x)2 
n + n+11− (n + 1)x nx

= 
(1 − x)2 

. 

Often differentiating or integrating messes up the exponent of x in every term. In this case, we 
now have a formula for a sum of the form ixi−1, but we want a formula for the series ixi . 
The solution is simple: multiply by x. This gives: 

n	 n+2� 
ix i = 

x − (n + 1)xn+1 + nx

(1 − x)2 
i=1 

Since we could easily have made a mistake, it is a good idea to go back and validate a formula 
obtained this way with a proof by induction. 

Notice that if |x| < 1, then this series converges to a finite value even if there are infinitely many 
terms. Taking the limit as n tends infinity gives the following theorem: 

Theorem 2.3. If |x| < 1, then 

∞

ixi = 
x 

(1 − x)2 
. 

i=1 

As a consequence, suppose there is an annuity that pays im dollars at the end of each year i forever. 
For example, if m = $50, 000, then the payouts are $50, 000 and then $100, 000 and then $150, 000 
and so on. It is hard to believe that the value of this annuity is finite! But we can use the preceding 
theorem to compute the value: 

∞� im 
V = 

(1 + p)i 
i=1 

1 
1+p= m 1 )2(1 − 1+p

1 + p
= m .

2p

The second line follows by an application of Theorem 2.3. The third line is obtained by multiplying 
the numerator and denominator by (1 + p)2 . 

For example, if m = $50, 000, and p = 0.08 as usual, then the value of the annuity is V = 
$8, 437, 500. Even though payments increase every year, the increase is only additive with time; by 
contrast, dollars paid out in the future decrease in value exponentially with time. The geometric 
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decrease swamps out the additive increase. Payments in the distant future are almost worthless, 
so the value of the annuity is finite. 

The important thing to remember is the trick of taking the derivative (or integral) of a summation 
formula. Of course, this technique requires one to compute nasty derivatives correctly, but this is 
at least theoretically possible! 

3 Book Stacking 

Suppose you have a pile of books and you want to stack them on a table in some off­center way 
so the top book sticks out past books below it. How far past the edge of the table do you think 
you could get the top book to go without having the stack fall over? Could the top book stick out 
completely beyond the edge of table? 

Most people’s first response to this question—sometimes also their second and third responses— 
is “No, the top book will never get completely past the edge of the table.” But in fact, you can 
get the top book to stick out as far as you want: one booklength, two booklengths, any number of 
booklengths! 

3.1 Formalizing the Problem 

We’ll approach this problem recursively. How far past the end of the table can we get one book to 
stick out? It won’t tip as long as its center of mass is over the table, so we can get it to stick out 
half its length, as shown in Figure 1. 

table

1

2

center of mass
of book

Figure 1: One book can overhang half a book length. 

Now suppose we have a stack of books that will stick out past the table edge without tipping 
over—call that a stable stack. Let’s define the overhang of a stable stack to be the largest horizontal 
distance from the center of mass of the stack to the furthest edge of a book. If we place the center 
of mass of the stable stack at the edge of the table as in Figure 2, that’s how far we can get a book 
in the stack to stick out past the edge. 

So we want a formula for the maximum possible overhang, Bn, achievable with a stack of n books. 
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table

center of mass
of the whole stack

overhang

Figure 2: Overhanging the edge of the table. 

We’ve already observed that the overhang of one book is 1/2 a book length. That is, 

1 
B1 = .

2

Now suppose we have a stable stack of n + 1 books with maximum overhang. If the overhang 
of the n books on top of the bottom book was not maximum, we could get a book to stick out 
further by replacing the top stack with a stack of n books with larger overhang. So the maximum 
overhang, Bn+1, of a stack of n+1 books is obtained by placing a maximum overhang stable stack 
of n books on top of the bottom book. And we get the biggest overhang for the stack of n+1 books 
by placing the center of mass of the n books right over the edge of the bottom book as in Figure 3. 

So we know where to place the n + 1st book to get maximum overhang, and all we have to do is 
calculate what it is. The simplest way to do that is to let the center of mass of the top n books be 
the origin. That way the horizontal coordinate of the center of mass of the whole stack of n + 1 
books will equal the increase in the overhang. But now the center of mass of the bottom book has 
horizontal coordinate 1/2, so the horizontal coordinate of center of mass of the whole stack of n+1 
books is 

n + (1/2) · 1
=

10 ·
n + 1 2(n + 1)

. 

In other words, 
1 

Bn+1 = Bn + 
2(n + 1)

, (6) 

as shown in Figure 3. 

Expanding equation (6), we have 

1 1 
Bn+1 = Bn−1 + +

2(n + 1) 2n 

1 1 1 
= B1 + + +

2 · 2
+ · · ·

2n 2(n + 1) 

1 n+1� 1 
= 

2 i
. 

i=1 
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table

}

2( n+1)

1

ntop books}center of mass
of top booksn

center of mass
of all +1 booksn

Figure 3: Additional overhang with n + 1 books. 

Define 
n� 1 

Hn ::= . 
i 

i=1 

Hn is called the nth Harmonic number, and we have just shown that 

Hn
Bn = 

2 
. 

The first few Harmonic numbers are easy to compute. For example, H1 = 1, H2 = 1 + 1 = 2 ,2 
11 25H3 = 1 + 1 + 1 = 6 , H4 = 1 + 1 + 1 + 1 = 12 . The fact that H4 is greater than 2 has special 2 3 2 3 4 

significance; it implies that the total extension of a 4­book stack is greater than one full book! This 
is the situation shown in Figure 4. 

Table

1

1/2

1/3

1/4

Figure 4: Stack of four books with maximum overhang.


In the next section we will prove that Hn grows slowly, but unboundedly with n. That means we 
can get books to overhang any distance past the edge of the table by piling them high enough! 

3 
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3.2 Evaluating the Sum—The Integral Method 

It would be nice to answer questions like, “How many books are needed to build a stack extending 
100 book lengths beyond the table?” One approach to this question would be to keep computing 
Harmonic numbers until we found one exceeding 200. However, as we will see, this is not such a 
keen idea. 

Such questions would be settled if we could express Hn in a closed form. Unfortunately, no closed 
form is known, and probably none exists. As a second best, however, we can find closed forms 
for very good approximations to Hn using the Integral Method. The idea of the Integral Method 
is to bound terms of the sum above and below by simple functions as suggested in Figure 5. The 
integrals of these functions then bound the value of the sum above and below. 

1

0 1 2 3 4 5 6 7 8

1 / x

1 / (x + 1)

Figure 5: This figure illustrates the Integral Method for bounding a sum. The area under the “stairstep” 
ncurve over the interval [0, n] is equal to Hn = 1/i. The function 1/x is everywhere greater than or i=1 

equal to the stairstep and so the integral of 1/x over this interval is an upper bound on the sum. Similarly, 
1/(x + 1) is everywhere less than or equal to the stairstep and so the integral of 1/(x + 1) is a lower bound 
on the sum. 

The Integral Method gives the following upper and lower bounds on the harmonic number Hn: 

n 1
1 + dx = 1 + ln n (7)Hn ≤ 

1 x � n 1 
� n+1 1 

dx = dx = ln(n + 1).Hn ≥ 
0 x + 1 1 x 

These bounds imply that the harmonic number Hn is around ln n. Since ln n grows without bound, 
albeit slowly, we can make a stack of books that extends arbitrarily far. 

For example, to build a stack extending three book lengths beyond the table, we need a number 
of books n so that Hn ≥ 6. Exponentiating the above inequalities gives 

e Hn−1 ≤ n ≤ e Hn − 1. 

This implies that we will need somewhere between 149 and 402 books. Actual calculation of Hn 

shows that 227 books will be the minimum number to overhang three book lengths. 
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3.3 More about Harmonic Numbers 

In the preceding section, we showed that Hn is about ln n. A even better approximation is known: 

1 1 �(n)
Hn = ln n + γ + + + 

42n 12n2 120n

Here γ is a value 0.577215664 . . . called Euler’s constant, and �(n) is between 0 and 1 for all n. We 
will not prove this formula. 

The shorthand Hn ∼ ln n is used to indicate that the leading term of Hn is ln n. More precisely: 

Definition 3.1. For functions f, g : R R, we say f is asymptotically equal to g, in symbols, → 

f(x) ∼ g(x) 

iff 
lim f(x)/g(x) = 1. 

x→∞ 

We also might write Hn ∼ ln n + γ to indicate two leading terms. While this notation is widely 
used, it is not really right. Referring to the definition of ∼, we see that while Hn ∼ ln n + γ is a 
true statement, so is Hn ∼ ln n + c where c is any constant. The correct way to indicate that γ is 
the second­largest term is Hn − ln n ∼ γ. 

The reason that the ∼ notation is useful is that often we do not care about lower order terms. For 
example, if n = 100, then we can compute H(n) to great precision using only the two leading 
terms: 

Hn − ln n − γ| ≤ <

1


200

.


1 1 1 
+|

200 
− 

120000 120 · 1004 

4 Finding Summation Formulas 

nThe source of the simple formula i = n(n + 1)/2 is still a mystery! Sure, we can prove this i=1 

statement true by induction, but where did the expression on the right come from? Even more 
inexplicable is the summation formula for consecutive squares: 

n

i2 
(2n + 1)(n + 1)n 

= 
6 

i=1 

n3 n2 n 
= 

3 
+ 

2 
+ 

6 
n3 

∼ 
3 

. 

Here is how we might find the sum­of­squares formula if we forgot it or had never seen it. First, 
the Integral Method gives a quick estimate of the sum: 

n

x 2 dx ≤ i2 ≤ 
0 

(x + 1)2 dx 
0 i=1 

n

n n 

3 (n + 1)3 1n
i2 ≤


3 
≤ .− 

33

i=1 
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nThese upper and lower bounds obtained by the Integral Method show that i2 ∼ n3/3. To get i=1 

an exact formula, we then guess the general form of the solution. Where we are uncertain, we can 
add parameters a, b, c, . . . . For example, we might make the guess: 

n

i2 = an 3 + bn2 + cn + d. 
i=1 

If the guess is correct, then we can determine the parameters a, b, c, and d by plugging in a few 
values for n. Each such value gives a linear equation in a, b, c, and d. If we plug in enough values, 
we may get a linear system with a unique solution. Applying this method to our example gives: 

n = 0 0 = d→ 

n = 1 1 = a + b + c + d→ 

n = 2 5 = 8a + 4b + 2c + d→ 

n = 3 14 = 27a + 9b + 3c + d.→ 

Solving this system gives the solution a = 1/3, b = 1/2, c = 1/6, d = 0. Therefore, if our initial 
guess at the form of the solution was correct, then the summation is equal to n3/3 + n2/2 + n/6. 
In fact, our initial guess was correct, this is the right formula for the sum of squares! 

Be careful! After obtaining a formula by this method, always go back and prove it using induction 
or some other method. This is not merely a check for algebra blunders; if the initial guess at the 
solution was not of the right form, then the resulting formula will be completely wrong! 

5 Double Sums 

Sometimes we have to evaluate sums of sums, otherwise known as double summations. Sometimes 
it is easy: we can evaluate the inner sum, replace it with a closed form, and then evaluate the outer 
sum which no longer has a summation inside it. 

But there’s a special trick that is often extremely useful for sums, which is exchanging the order 
of summation. It’s best demonstrated by example. Suppose we want to compute the sum of the 
harmonic numbers 

n n k

Hk = 1/j 
k=1 k=1 j=1 

For intuition about this sum, we can try the integral method: 

n � n 

Hk ≈ lnx dx ≈ n lnn − n. 
1k=1 

Now let’s look for an exact answer. If we think about the pairs (k, j) over which we are summing,
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they form a triangle: 

k	 1 
2 
3 
4 

n 

j 
1 2 3 4 5 . . . n 

1

1 1/2

1 1/2 1/3

1 1/2 1/3 1/4


. . . 
1 1/2 . . . 1/n 

The summation above is summing each row and then adding the row sums. Instead, we can sum 
the columns and then add the column sums. Inspecting the table we see that this double sum can 
be written as 

n n k

Hk = 1/j 
k=1 k=1 j=1 

n n

= 1/j 
j=1 k=j 

n n

= 1/j 1 
j=1 k=j 

n� 1 
= (n − j + 1)

j
j=1 

n� n − j + 1 
= 

j
j=1 

n n� n + 1 � j
= 

j	
− 

j
j=1 j=1 

n n� 1 � 
= (n + 1) 

j 
− 1 

j=1 j=1 

= (n + 1)Hn − n.	 (8) 

6 Stirling’s Approximation 

The familiar factorial notation, n!, is an abbreviation for the product 

n

i. 
i=1 

This is by far the most common product in Discrete Mathematics. In this section we describe a 
good closed­form estimate of n! called Stirling’s Approximation. Unfortunately, all we can do is 
estimate: there is no closed form for n! — though proving so would take us beyond the scope of 
6.042. 
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6.1 Products to Sums 

A good way to handle a product is often to convert it into a sum by taking the logarithm. In the 
case of factorial, this gives 

ln(n!) = ln(1 2 3 · · · (n − 1) · n)· ·
= ln 1 + ln 2 + ln 3 + · · ·+ ln(n − 1) + ln n 

= ln i. 
i=1 

We’ve not seen a summation containing a logarithm before! Fortunately, one tool that we used in 
evaluating sums is still applicable: the Integral Method. We can bound the terms of this sum with 
ln x and ln(x + 1) as shown in Figure 6. This gives bounds on ln(n!) as follows: 

n

n 

ln x dx ≤ =1 
n
i

n 

ln i ≤ ln(x + 1) dx 
1 0 

n + 1 n � 
n ln( ) + 1 ≤ =1e 

n
i ln i ≤ (n + 1) ln
 + 1 

e 
n+1 n + 1 nn 

e ≤ n! ≤ e. 
e e 

The second line follows from the first by completing the integrations. The third line is obtained by 
exponentiating. 

ln(x + 1)

ln(x)

Figure 6: This figure illustrates the Integral Method for bounding the sum
 n
i=1 

)n . A more careful analysis yields an 

ln i. 

So n! behaves something like the closed form formula ( e
n 

unexpected closed form formula that is asymptotically exact: 

Lemma (Stirling’s Formula). � �n 
n! ∼ 

n √
2πn, 

e 

Stirling’s Formula describes how n! behaves in the limit, but to use it effectively, we need to know 
how close it is to the limit for different values of n. That information is given by the bounding 
formulas: 



� 
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Fact (Stirling’s Approximation). 

n n 
1/(12n+1) n n 

1/12n
√

2πn 
� �

e ≤ n! ≤
√

2πn 
� �

e . 
e e 

The Approximation implies the asymptotic Formula, since since e1/(12n+1) and e1/12n both ap­
proach 1 as n grows large. These inequalities can be verified by induction, but the details are 
nasty. 

The bounds in Stirling’s formula are very tight. For example, if n = 100, then Stirling’s bounds 
are: � �100 100 1/1201 100! 

√
200π e≥ 

e � �100 100 1/1200 100! 
√

200π e≤ 
e 

The only difference between the upper bound and the lower bound is in the final term. In partic­
ular e1/1201 ≈ 1.00083299 and e1/1200 ≈ 1.00083368. As a result, the upper bound is no more than 
1 + 10−6 times the lower bound. This is amazingly tight! Remember Stirling’s formula; we will 
use it often. 

6.2 Bounds by Double Summing 

Another way to derive Stirling’s approximation is to remember that ln n is roughly the same as Hn. 
This lets us use the result we derived before for Hk via double summation. Our approximation 
for Hk told us that ln(k + 1) ≤ Hk ≤ 1 + ln k. Rewriting, we find that Hk − 1 ≤ ln k ≤ Hk−1. It 
follows that (leaving out the i = 1 term in the sum, which contributes 0), 

n n

ln i ≤ Hi−1


i=2 i=2


n−1

= Hi


i=1


= nHn−1 − (n − 1) by (8) 
≤ n(1 + ln(n − 1)) − (n − 1) by (7) 

= n ln(n − 1) + 1, 

roughly the same bound as we proved before via the integral method. We can derive a similar 
lower bound. 

7 Asymptotic Notation 

Asymptotic notation is a shorthand used to give a quick measure of the behavior of a function 
f(n) as n grows large. 
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7.1 Little Oh 

The asymptotic notation ∼ is an equivalence relation indicating that ∼­equivalent functions grow 
at exactly the same rate. There is a corresponding strict partial order on functions indicating that 
one function grows at a significantly slower rate. Namely, 

Definition 7.1. For functions f, g : R R, we say f is asymptotically smaller than g, in symbols, → 

f(x) = o(g(x)), 

iff 
lim f(x)/g(x) = 0. 

x→∞ 

For example, 1000x1.9 = o(x2), because 1000x1.9/x2 = 1000/x0.1 and since x0.1 goes to infinity 
with x and 1000 is constant, we have limx→∞ 1000x1.9/x2 = 0. This argument generalizes directly 
to yield 

Lemma 7.2. xa = o(xb) for all nonnegative constants a < b.


Using the familiar fact that log x < x for all x > 1, we can prove


Lemma 7.3. log x = o(x�) for all � > 0 and x > 1.


Proof. Choose � > δ > 0 and let x = zδ in the inequality log x < x. This implies


δlog z < z /δ = o(z �) by Lemma 7.2. (9) 

bCorollary 7.4. x = o(ax) for any a, b ∈ R with a > 1. 

Proof. From (9), 
log z < z δ/δ 

for all z > 1, δ > 0. Hence 

(e b)log z < (e b)zδ/δ 

z b < 
� 
elog a(b/ log a) 

�zδ/δ 

= a(b/δ log a)zδ 

< a z 

for all z such that (b/δ log a)zδ < z. But since zδ = o(z), this last inequality holds for all large 
enough z. 

Lemma 7.3 and Corollary 7.4 can also be proved easily in several other ways, e.g., using L’Hopital’s 
Rule or the McLaurin Series for log x and ex. Proofs can be found in most calculus texts. 

Problem 1. Prove the initial claim that log x < x for all x > 1 (requires elementary calculus). 

Problem 2. Prove that the relation, R, on functions such that fRg iff f = o(g) is a strict partial 
order, namely, R is transitive and asymmetric: if fRg then ¬gRf . 

Problem 3. Prove that f ∼ g iff f = g + h for some function h = o(g). 
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7.2 Big Oh 

Big Oh is the most frequently used asymptotic notation. It is used to give an upper bound on the 
growth of a function, such as the running time of an algorithm. 

Definition 7.5. Given functions f, g : R R, with g nonnegative, we say that → 

f = O(g) 

iff 
lim sup f(x) /g(x) < ∞.| |

x→∞ 

This definition2 makes it clear that 

Lemma 7.6. If f = o(g) or f ∼ g, then f = O(g). 

Proof. lim f/g = 0 or lim f/g = 1 implies lim f/g < ∞. 

It is easy to see that the converse of Lemma 7.6 is not true. For example, 2x = O(x), but 2x �∼ x 
and 2x =� o(x). 

The usual formulation of Big Oh spells out the definition of lim sup without mentioning it. Namely, 
here is an equivalent definition: 

Definition 7.7. Given functions f, g : R R, we say that → 

f = O(g) 

iff there exists a constant c ≥ 0 and an x0 such that for all x ≥ x0, f(x) ≤ cg(x).| | 

This definition is rather complicated, but the idea is simple: f(x) = O(g(x)) means f(x) is less 
than or equal to g(x), except that we’re willing to ignore a constant factor, viz., c, and to allow 
exceptions for small x, viz., x < x0. 

We observe, 

Lemma 7.8. Assume that g is nonnegative. If f = o(g), then it is not true that g = O(f). 

Proof. 
g(x)

=
1 1

lim = = 
x→∞ f(x) limx→∞ 

f(x) 0 
∞, 

g(x) 

so g =� O(f). 

2 

lim sup h(x) ::= lim luby≥xh(y). 
x→∞ x→∞ 

We need the lim sup in the definition of O() because if f(x)/g(x) oscillates between, say, 3 and 5 as x grows, 
then f = O(g) because f ≤ 5g, but limx→∞ f(x)/g(x) does not exist. However, in this case we would have 
lim supx→∞ f(x)/g(x) = 5. 
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Proposition 7.9. 100x2 = O(x2). 

≤100x
Proof. Choose c = 100 and x0 = 1. Then the proposition holds, since for all x ≥ 1, 
100x .


Proposition 7.10. x2 + 100x + 10
= O(x2). 

Proof. (x2+100x+10)/x2 = 1+100/x+10/x2 and so its limit as x approaches infinity is 1+0+0 = 1. 
So in fact, x2 + 100x + 10 ∼ x2, and therefore x2 + 100x + 10 = O(x2). Indeed, it’s conversely true 
that x2 = O(x2 + 100x + 10). 

Proposition 7.10 generalizes to an arbitrary polynomial by a similar proof, which we omit. 

Proposition 7.11. For ak = 0, akx
k + ak−1x

k−1 + + a1x + a0 = O(xk).� · · ·

Big Oh notation is especially useful when describing the running time of an algorithm. For exam­
ple, the usual algorithm for multiplying n × n matrices requires proportional to n3 operations in 
the worst case. This fact can be expressed concisely by saying that the running time is O(n3). So 
this asymptotic notation allows the speed of the algorithm to be discussed without reference to 
constant factors or lower­order terms that might be machine specific. In this case there is another, 
ingenious matrix multiplication procedure that requires O(n2.55) operations. This procedure will 
therefore be much more efficient on large enough matrices. Unfortunately, the O(n2.55)­operation 
multiplication procedure is almost never used because it happens to be less efficient than the usual 
O(n3) procedure on matrices of practical size. It is even conceivable that there is an O(n2) matrix 
multiplication procedure, but none is known. 

7.3 Theta 

Definition 7.12. 
f = Θ(g) iff f = O(g) ∧ g = O(f). 

The statement f = Θ(g) can be paraphrased intuitively as “f and g are equal to within a constant 
factor.” 

The value of these notations is that they highlight growth rates and allow suppression of distract­
ing factors and low­order terms. For example, if the running time of an algorithm is 

3T (n) = 10n − 20n 2 + 1, 

then 
T (n) = Θ(n 3). 

In this case, we would say that T is of order n3 or that T (n) grows cubically. 

Another such example is 

π23x−7 +
(2.7x113 + x9 − 86)4 − 1.083x = Θ(3x).√

x 
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Just knowing that the running time of an algorithm is Θ(n3), for example, is useful, because if n 
doubles we can predict that the running time will by and large3 increase by a factor of at most 8 for 
large n. In this way, Theta notation preserves information about the scalability of an algorithm or 
system. Scalability is, of course, a big issue in the design of algorithms and systems. 

7.4 Pitfalls with Big Oh 

There is a long list of ways to make mistakes with Big Oh notation. This section presents some of 
the ways that Big Oh notation can lead to ruin and despair. 

7.4.1 The Exponential Fiasco 

Sometimes relationships involving Big Oh are not so obvious. For example, one might guess that 
4x = O(2x) since 4 is only a constant factor larger than 2. This reasoning is incorrect, however; 
actually 4x grows much faster than 2x . 

Proposition 7.13. 4x =� O(2x) 

Proof. 2x/4x = 2x/(2x2x) = 1/2x . Hence, limx→∞ 2x/4x = 0, so in fact 2x = o(4x). We observed 
earlier that this implies that 4x =� O(2x). 

7.4.2 Constant Confusion 

Every constant is O(1). For example, 17 = O(1). This is true because if we let f(x) = 17 and 
g(x) = 1, then there exists a c > 0 and an x0 such that |f(x) ≤ cg(x). In particular, we could |
choose c = 17 and x0 = 1, since 17 ≤ 17 · 1 for all x ≥ 1. We can construct a false theorem that | |
exploits this fact. 

False Theorem 7.14. 
n

i = O(n) 
i=1 

nFalse proof. Define f(n) = i = 1 + 2 + 3 + + n. Since we have shown that every constant ii=1 · · ·
is O(1), f(n) = O(1) + O(1) + · · ·+ O(1) = O(n). 

nOf course in reality i = n(n + 1)/2 =� O(n).i=1 

The error stems from confusion over what is meant in the statement i = O(1). For any constant 
i ∈ N it is true that i = O(1). More precisely, if f is any constant function, then f = O(1). But in 
this False Theorem, i is not constant but ranges over a set of values 0,1,. . . ,n that depends on n. 

And anyway, we should not be adding O(1)’s as though they were numbers. We never even 
defined what O(g) means by itself; it should only be used in the context “f = O(g)” to describe a 
relation between functions f and g. 

33Since Θ(n ) only implies that the running time, T (n), is between cn 3 and dn3 for constants 0 < c < d, the time 
T (2n) could regularly exceed T (n) by a factor as large as 8d/c. The factor is sure to be close to 8 for all large n only if 
T (n) ∼ n 3 . 
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7.4.3 Lower Bound Blunder 

Sometimes people incorrectly use Big Oh in the context of a lower bound. For example, they 
might say, “The running time, T (n), is at least O(n2),” when they probably mean something like 
“O(T (n)) = n2,” or more properly, “n2 = O(T (n)).” 

7.4.4 Equality Blunder 

The notation f = O(g) is too firmly entrenched to avoid, but the use of “=” is really regrettable. 
For example, if f = O(g), it seems quite reasonable to write O(g) = f . But doing so might tempt 
us to the following blunder: because 2n = O(n), we can say O(n) = 2n. But n = O(n), so we 
conclude that n = O(n) = 2n, and therefore n = 2n. To avoid such nonsense, we will never write 
“O(f) = g.” 
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