Solutions to In-Class Problems Week 9, Mon.

Problem 1. Prove that asymptotic equality (\sim) is an equivalence relation.
Solution. reflexivity: $\lim _{x \rightarrow \infty} f(x) / f(x)=1$, so $f \sim f$.
symmetry: Say $f \sim g$. Then $\lim _{x \rightarrow \infty} f(x) / g(x)=1$. So $\lim _{x \rightarrow \infty} g(x) / f(x)=\lim _{x \rightarrow \infty} 1 /(f(x) / g(x))=$ $1 / \lim _{x \rightarrow \infty} f(x) / g(x)=1 / 1=1$, and therefore $g \sim f$.
transitivity: Say $f \sim g$ and $g \sim h$. So

$$
\begin{aligned}
1 & =1 \cdot 1 \\
& =\left[\lim _{x \rightarrow \infty} f(x) / g(x)\right] \cdot\left[\lim _{x \rightarrow \infty} g(x) / h(x)\right] \\
& =\lim _{x \rightarrow \infty}[f(x) / g(x)] \cdot[g(x) / h(x)] \\
& =\lim _{x \rightarrow \infty} f(x) / h(x),
\end{aligned}
$$

so $f \sim h$.

Problem 2. Recall that for functions f, g on the natural numbers, $\mathbb{N}, f=O(g)$ iff

$$
\begin{equation*}
\exists c \in \mathbb{N} \exists n_{0} \in \mathbb{N} \forall n \geq n_{0} \quad c \cdot g(n) \geq|f(n)| . \tag{1}
\end{equation*}
$$

For each pair of functions below, determine whether $f=O(g)$ and whether $g=O(f)$. In cases where one function is O() of the other, indicate the smallest natural number, c, and for that smallest c, the smallest corresponding natural number n_{0} ensuring that condition (1) applies.
(a) $f(n)=n^{2}, g(n)=3 n$.
$f=O(g)$
YES
NO
If YES, $c=$ \qquad , $n_{0}=$ \qquad

Solution. NO.
$g=O(f) \quad$ YES \quad NO
If YES, $c=$ \qquad $n_{0}=$ \qquad

[^0]Solution. YES, with $c=1, n_{0}=3$, which works because $3^{2}=9,3 \cdot 3=9$.
(b) $f(n)=(3 n-7) /(n+4), g(n)=4$
$f=O(g)$
YES NO
If YES, $c=$ \qquad $n_{0}=$ \qquad
Solution. YES, with $c=1, n_{0}=0$ (because $|f(n)|<3$).
$g=O(f)$
YES
NO
If YES, $c=$ \qquad $n_{0}=$ \qquad
Solution. YES, with $c=2, n_{0}=15$.
Since $\lim _{n \rightarrow \infty} f(n)=3$, the smallest possible c is 2 . For $c=2$, the smallest possible $n_{0}=15$ which follows from the requirement that $2 f\left(n_{0}\right) \geq 4$.
(c) $f(n)=1+(n \sin (n \pi / 2))^{2}, g(n)=3 n$
$f=O(g)$
YES
NO
If yes, $c=$ \qquad $n_{0}=$ \qquad
Solution. NO, because $f(2 n)=1$, which rules out $g=O(f)$ since $g=\Theta(n)$.
$g=O(f)$
YES
NO
If yes, $c=$ \qquad $n_{0}=$ \qquad
Solution. NO, because $f(2 n+1)=n^{2}+1 \neq O(n)$ which rules out $f=O(g)$.

Problem 3. Indicate which of the following holds for each pair of functions $(f(n), g(n))$ in the table below. Assume $k \geq 1, \epsilon>0$, and $c>1$ are constants. Be prepared to justify your answers.

$f(n)$	$g(n)$	$f=O(g)$	$f=o(g)$	$g=O(f)$	$g=o(f)$	$f=\Theta(g)$	$f \sim g$
2^{n}	$2^{n / 2}$						
\sqrt{n}	$n^{\sin n \pi / 2}$						
$\log (n!)$	$\log \left(n^{n}\right)$						
n^{k}	c^{n}						
$\log ^{k} n$	n^{ϵ}						

Solution.

$f(n)$	$g(n)$	$f=O(g)$	$f=o(g)$	$g=O(f)$	$g=o(f)$	$f=\Theta(g)$	$f \sim g$
2^{n}	$2^{n / 2}$	no	no	yes	yes	no	no
\sqrt{n}	$n^{\sin n \pi / 2}$	no	no	no	no	no	no
$\log (n!)$	$\log \left(n^{n}\right)$	yes	no	yes	no	yes	yes
n^{k}	c^{n}	yes	yes	no	no	no	no
$\log ^{k} n$	n^{ϵ}	yes	yes	no	no	no	no

Following are some hints on deriving the table above:
(a) $\frac{2^{n}}{2^{n / 2}}=2^{n / 2}$ grows without bound as n grows-it is not bounded by a constant.
(b) When n is even, then $n^{\sin n \pi / 2}=1$. So, no constant times $n^{\sin n \pi / 2}$ will be an upper bound on \sqrt{n} as n ranges over even numbers. When $n \equiv 1 \bmod 4$, then $n^{\sin n \pi / 2}=n^{1}=n$. So, no constant times \sqrt{n} will be an upper bound on $n^{\sin n \pi / 2}$ as n ranges over numbers $\equiv 1 \bmod 4$.
(c)

$$
\begin{align*}
\log (n!) & =\log \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \pm c_{n} \tag{2}\\
& =\log n+n(\log n-1) \pm d_{n} \tag{3}\\
& \sim n \log n \tag{4}\\
& =\log n^{n} .
\end{align*}
$$

where $a \leq c_{n}, d_{n} \leq b$ for some constants $a, b \in \mathbb{R}$ and all n. Here equation (2) follows by taking logs of Stirling's formula, (3) follows from the fact that the log of a product is the sum of the logs, and (4) follows because any constant, $\log n$, and n are all $o(n \log n)$ and hence so is their sum.
(d) Polynomial growth versus exponential growth.
(e) Polylogarithmic growth versus polynomial growth.

Problem 4. It is a standard fallacy to think that given n quantities each of which is $O(1)$, their sum would have to be $O(n)$.
Namely, let f_{1}, f_{2}, \ldots be a sequence of functions from \mathbb{N} to \mathbb{N}, and let

$$
S(n)::=\sum_{i=1}^{n} f_{i}(n) .
$$

Then given that $f_{i}=O(1)$ for every f_{i} in the sequence, we can try to argue as follows:

$$
S(n)=\sum_{i=1}^{n} f_{i}(n)=\sum_{i=1}^{n} O(1)=n \cdot O(1)=O(n) .
$$

This informal argument may seem plausible, but is fundamentally flawed because it treats $\mathrm{O}(1)$ as some kind numerical quantity. In fact, we ask you to show that there is no way to determine how fast the sum, $S(n)$, may grow.
Namely, let g be any function on \mathbb{N}. Explain how to define a sequence of functions f_{1}, f_{2}, \ldots such that each $f_{i}=O(1)$, but S is not $O(g)$. Hint: Let $f_{i}(n)::=1+i g(i)$.

Solution. Pick f_{i} to be the constant function $i(1+g(i))$. That is,

$$
f_{i}(n)::=i(1+g(i)),
$$

for all n. Since f_{i} is a constant function, it is $O(1)$. But

$$
S(n) \sum_{i=1}^{n} f_{i}(n) \geq f_{n}(n)=n(1+g(n))
$$

so $g=o(S)$ and therefore $S \neq O(g)$.

Asymptotic Notations

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, we say f is asymptotically equal to g, in symbols,

$$
f(x) \sim g(x)
$$

iff

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=1
$$

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, we say f is asymptotically smaller than g, in symbols,

$$
f(x)=o(g(x)),
$$

iff

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=0
$$

Given functions $f, g: \mathbb{R} \mapsto \mathbb{R}$, with g nonnegative, we say that ${ }^{1}$

$$
f=O(g)
$$

iff

$$
\limsup _{x \rightarrow \infty}|f(x)| / g(x)<\infty
$$

An alternative, equivalent, definition is

$$
f=O(g)
$$

iff there exists a constant $c \geq 0$ and an x_{0} such that for all $x \geq x_{0},|f(x)| \leq c g(x)$.
Finally, we say

$$
f=\Theta(g) \quad \text { iff } \quad f=O(g) \wedge g=O(f)
$$

[^1]
[^0]: Copyright © 2005, Prof. Albert R. Meyer.

[^1]: 1

 $$
 \limsup _{x \rightarrow \infty} h(x)::=\lim _{x \rightarrow \infty} \operatorname{lub}_{y \geq x} h(y)
 $$

