Undirected Graphs: Isomorphism

Definition

An Undirected Graph is a set of vertices V and a set of edges E where each edge is an unordered pair of distinct vertices a and b.

$$
a-b(\text { edge } a b)=\{a, b\}
$$

Degree of a vertex v is the number of edges it connects to.

$$
\operatorname{deg}(a)=2 \quad \operatorname{deg}()=4
$$

Isomorphic Graphs

Graph Isomorphism

Graphs G_{1} and G_{2} are isomorphic if there exists a bijection $f: V_{1} \rightarrow V_{2}$ such that for all u,v in V_{1}
$\boldsymbol{u}-\boldsymbol{v}$ is in $\boldsymbol{E}_{1} \quad$ iff $\quad \boldsymbol{f}(\boldsymbol{u})-f(v)$ is in \boldsymbol{E}_{2}
There is a one-to-one correspondence between the nodes of G_{1} and G_{2} that preserves all edge connections.

Finding the Mapping

- Not easy, can try all possible mappings
- Roughly n! possibilities
- Can test for Invariants
- Same number of nodes, edges
- Same degree distributions
- Preserves cycles, longest path, etc

