In-Class Problems Week 3, Wed.

Problem 1. Use induction to prove that

$$
\begin{equation*}
1^{3}+2^{3}+\ldots+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2} \tag{1}
\end{equation*}
$$

for all $n \geq 1$.
Remember to formally

1. Declare proof by induction.
2. Identify the induction hypothesis $P(n)$.
3. Establish the base case.
4. Prove that $P(n) \Rightarrow P(n+1)$.
5. Conclude that $P(n)$ holds for all $n \geq 1$.
as in the five part template.

Problem 2. (a) Prove by induction that a $2^{n} \times 2^{n}$ courtyard with a 1×1 statue of Bill in any position can be covered with L-shaped tiles.
(b) (Discussion Question) In part (a) we saw that it can be easier to prove a stronger theorem. Does this surprise you? How would you explain this phenomenon?

