Permutation of a list

A permutation of a list is just some reordering of it, e.g.
$4,1,3,2 \rightarrow 1,2,3,4$
$10,2,14,2 \rightarrow 14,2,10,2$

Some interesting permutations

- Backwards reordering

1,2,3,4,5,6,7,8 \rightarrow 8,7,6,5,4,3,2,1
1,3,5,7,2,4,6,8 \rightarrow 8,6,4,2,7,5,3,1

- Sorting

5,3,1,8,2,4,7,6 \rightarrow 1,2,3,4,5,6,7,8

- Card shuffling

1,2,3,4,5,6,7,8 \rightarrow
(cut the deck) 1,2,3,4 5,6,7,8 \rightarrow (combine) 1,5,2,6,3,7,4,8

Last lecture's lemmas

Assume p prime, $k \neq 0$ not a multiple of p then

1. k has a multiplicative inverse $\bmod p$
$2 . a k \equiv b k(\bmod p) \Rightarrow a \equiv b(\bmod p)$
2. $(0 \cdot \mathrm{k})$ rem $p,(1 \cdot k)$ rem $p, \ldots,((p-1) \cdot k)$ rem p is a permutation of the sequence $0,1, \ldots, p-1$
3. Fermat's theorem: $k^{p-1} \equiv 1(\bmod p)$

Working (mod n) for composite n

Do we have inverses? Cancellation? Analogue of Fermat's theorem?

Relatively Prime Numbers

- a, b are relatively prime if $\operatorname{gcd}(a, b)=1$
- Examples:
-Not relatively prime:
- 2,4
-Relatively prime:
-9,10
- p, k if p is a prime and k not a multiple of p

Inverses modn

Thm. If k relatively prime to n then k has an inverse k^{-1} such that $k k^{-1} \equiv 1(\bmod n)$

Cancellation

Corr: If k relatively prime to n then
$a k \equiv b k(\bmod n) \Rightarrow$
$a \equiv b(\bmod n)$

Euler $\boldsymbol{\phi}$ function

$$
\phi(n)=|\{j \mid 1 \leq j<n \quad \operatorname{gcd}(j, n)=1\}|
$$

Examples:

$$
\begin{aligned}
& \phi(7)=6 \\
& 1,2,3,4,5,6 \\
& \phi(49)=42 \\
& 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \ldots \\
& \phi(12)=4 \\
& \quad 1,2,3,4,5,6,7,8,9,10,11
\end{aligned}
$$

Euler's Theorem

If k relatively prime to n then
$k^{\phi(n)} \equiv 1(\bmod n)$

1. $\quad a, b$ relatively prime $\Rightarrow \phi(a b)=\phi(a) \phi(b)$
2. \quad p prime $\Rightarrow \phi\left(p^{k}\right)=p^{k}-p^{k-1}$ for $k \geq 1$

Examples:

$$
\begin{aligned}
& \phi(7)=7-1=6 \\
& 1,2,3,4,5,6 \\
& \phi(49)=49-7=42 \\
& 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, \ldots \\
& \phi(12)=\phi\left(2^{2}\right) \cdot \phi(3)=2 \cdot 2=4 \\
& 1,2,3,5,7,8,9,10,11 \\
& \text { R. Mever and Reniit Rubuíeld, 20as. }
\end{aligned}
$$

RSA

- Encoding: sender sends $m^{\prime}=m^{e}$ rem n
- Decoding: receiver decrypts as $m=\left(m^{\prime}\right)^{d}$ rem n

Beforehand

- Receiver generates primes p, q
- $n=p q$ (so $\phi(n)=(p-1)(q-1))$
- Selects e such that $\operatorname{gcd}(e,(p-1)(q-1))=1$
- $\quad e$ is public key, distributes e and n widely
- Computes d such that

$$
d e \equiv 1(\bmod (p-1)(q-1))
$$

- d is secret key, keeps it hidden

Why does this work?

- Why is $\left(m^{\prime}\right)^{d}$ rem $n=\left(m^{e} \text { rem } n\right)^{d}$ rem n the same as the original message?
- Will see why in class problem 2

Is it secure?

- What notion of security? Against which

Can we at least show that deciphering th message implies the ability to factor n ?

- We don't know how...
- see homework problem

