\qquad

Axioms \& Inference Rules
Namely, starting from a few propositional \& simple predicate validities, every valid assertion can be proved using just UG and modus ponens repeatedly!

Gödel's Completeness Theorem
Thm 1, good news: only need to know* a few axioms \& rules, to prove all validities.
*Theoretically only: having more rules is convenient.

Cannot Determine Validity

Thm 2, Bad News: there is no procedure that determines when quantified assertions are valid (in contrast to propositional formulas).

Three Profound Theorems

We won't prove these Theorems.
Their proofs usually require half a term in an intro logic course after 6.042.

Sets \& Functions

Informally,
a set is a collection of mathematical objects with the collection treated as a single mathematical object.
This is circular of course: what's a collection?

Some sets

Real numbers, \mathbb{R} complex numbers, $\mathbb{C} \square$ integers, \mathbb{Z}
the emptyset, $\quad \varnothing$
the $\underbrace{\text { set of all sets }}$ of integers, $\operatorname{pow}(\mathbb{Z})$
the power set

Some sets

$$
\{7, " A l b e r t R . ", \pi / 2, T\}
$$

A set with 4 elements: two numbers, a string, and a Boolean value.
Same as

$$
\begin{gathered}
\{\text { "Albert R.", } 7, T, \pi / 2\} \\
\text {-- order doesn’t matter }
\end{gathered}
$$

Defining Sets

The set of elements, x, in A such that $P(x)$ is true.

$$
\{x \in A \mid P(x)\}
$$

New sets from old

Venn Diagram for A and B

Russell's Paradox
Let $W::=\{S \in \operatorname{Sets} \mid S \notin S\}$
so $S \in W \leftrightarrow S \notin S$
Let S be W and reach a contradiction:

$$
W \in W \leftrightarrow W \notin W
$$

So the collection, Sets, of all sets, cannot be considered a set!

Russell's Paradox

 ,$$
f: A \rightarrow B
$$

f is the string-length function.
A, the domain of f, is the set of strings.
B, the codomain of f, is \mathbb{N}

$$
\begin{gathered}
g: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
g(x, y)=\frac{1}{x-y}
\end{gathered}
$$

domain $(g)=$ all pairs of reals codomain $(g)=$ all reals
But g is partial:
not defined on all pairs of reals

Onto functions

$f: A \rightarrow B$ is onto iff every element of B is f of something

$$
\forall b \in B \exists a \in A . f(a)=b
$$

a surjection
$f: A \rightarrow B$ is total iff every element of A is assigned a B-value by f

$$
\forall a \in A \exists b \in B . f(a)=b
$$

1-1 functions

$f: A \rightarrow B$ is $1-1$
iff every element of B is f of at most 1 thing
$\forall a, a^{\prime} \in A .\left(f(a)=f\left(a^{\prime}\right)\right) \rightarrow\left(a=a^{\prime}\right)$
an injection

