Solutions to In-Class Problems Week 15, Mon.

Problem 1. The Pairwise Independent Sampling Theorem generalizes easily to sequences of pairwise independent random variables, possibly with different means and variances, as long as their variances are bounded by some constant:

Theorem (Generalized Pairwise Independent Sampling). Let X_{1}, X_{2}, \ldots be a sequence of pairwise independent random variables such that $\operatorname{Var}\left[X_{i}\right] \leq b$ for some $b \geq 0$ and all $i \geq 1$. Let

$$
\begin{aligned}
& A_{n}::=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}, \\
& \mu_{n}::=\mathrm{E}\left[S_{n}\right] .
\end{aligned}
$$

Then for every $\epsilon>0$,

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|A_{n}-\mu_{n}\right|>\epsilon\right\} \leq \frac{b}{\epsilon^{2}} \cdot \frac{1}{n} \tag{1}
\end{equation*}
$$

(a) Prove the Generalized Pairwise Independent Sampling Theorem. Hint: The proof of the Pairwise Independent Sampling Theorem from the Notes is repeated in the Appendix.

Solution. Essentially identical to the proof attached, except that Var $\left[G_{i}\right]$ gets replaced by b, and the equality becomes \leq where the b is first used.
(b) Conclude

Corollary (Generalized Weak Law of Large Numbers). For every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left\{\left|A_{n}-\mu_{n}\right|>\epsilon\right\}=0
$$

Solution. For any fixed ϵ, the righthand side of (1) approaches 0 as n approaches infinity.

Problem 2. Write out a proof that

$$
\operatorname{Var}[a R]=a^{2} \operatorname{Var}[R]
$$

Problem 3. Finish discussing the "Explain sampling to a jury question" from last Friday.

1 Appendix

1.1 Chebyshev's Theorem

Theorem (Chebyshev). Let R be a random variable, and let x be a positive real number. Then

$$
\begin{equation*}
\operatorname{Pr}\{|R-\mathrm{E}[R]| \geq x\} \leq \frac{\operatorname{Var}[R]}{x^{2}} \tag{2}
\end{equation*}
$$

1.2 Pairwise Independent Sampling

Theorem (Pairwise Independent Linearity of Variance). If $R_{1}, R_{2}, \ldots, R_{n}$ are pairwise independent random variables, then

$$
\operatorname{Var}\left[R_{1}+R_{2}+\cdots+R_{n}\right]=\operatorname{Var}\left[R_{1}\right]+\operatorname{Var}\left[R_{2}\right]+\cdots+\operatorname{Var}\left[R_{n}\right]
$$

Theorem (Pairwise Independent Sampling). Let

$$
A_{n}::=\frac{\sum_{i=1}^{n} G_{i}}{n}
$$

where G_{1}, \ldots, G_{n} are pairwise independent random variables with the same mean, μ, and deviation, σ. Then

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|A_{n}-\mu\right|>x\right\} \leq\left(\frac{\sigma}{x}\right)^{2} \cdot \frac{1}{n} \tag{3}
\end{equation*}
$$

Proof. By linearity of expectation,

$$
\mathrm{E}\left[A_{n}\right]=\frac{\mathrm{E}\left[\sum_{i=1}^{n} G_{i}\right]}{n}=\frac{\sum_{i=1}^{n} \mathrm{E}\left[G_{i}\right]}{n}=\frac{n \mu}{n}=\mu
$$

Since the G_{i} 's are pairwise independent, their variances will also add, so

$$
\begin{array}{rlrl}
\operatorname{Var}\left[A_{n}\right] & =\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left[\sum_{i=1}^{n} G_{i}\right] & & \left(\operatorname{Var}[a R]=a^{2} \operatorname{Var}[R]\right) \\
& =\left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{Var}\left[G_{i}\right] & & \text { (linearity of variance) } \\
& =\left(\frac{1}{n}\right)^{2} n \sigma^{2} & \\
& =\frac{\sigma^{2}}{n} & &
\end{array}
$$

Now letting R be A_{n} in Chebyshev's Bound (2) yields (3), as required.

