Team Problem 1

Airline Gate Allocation

Given a set of airline flights needing gates at overlapping times, how many different gates do I need in order to accommodate them?

Model as a Graph

Coloring the Vertices

Better: 3 Colors

so 3 airline gates will do

More Conflicting Allocation Problems

- \# separate habitats to house different species of animals, some incompatible with others?
- \# different frequencies for radio stations that interfere with each other?
- \# different colors to color a map?

Countries are the Vertices

Four Color Theorem

Any planar map is 4-colorable. False proof published 1850's (was correct for 5 colors). Proof with computer calculations: 1970's. Much improved: 1990's

Chromatic Number

$\chi(G)=$ Chromatic Number of G
:= minimum \#colors for G

Complete Graph K_{5}

Team Problems

Problems 2 \& 3

