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Solutions to InClass Problems Week 11, Wed. 

Problem 1. Define the function f : N N recursively by the rules → 

f(0) = 1,


f(1) = 6,


f(n) = 2f(n − 1) + 3f(n − 2) + 4 for n ≥ 2.


(a) Find a closed form for the generating function 

G(x) ::= f(0) + f(1)x + f(2)x 2 + + f(n)x n +· · · · · · . 

Solution. 
G(x) = f(0) + f(1)x + f(2)x2 + f(n)xn ++ · · · · · · 

n ++ · · · · · · 2xG(x) = 2f(0)x + 2f(1)x2 + 2f(n − 1)x
n +3x2G(x) = 3f(0)x2 + 3f(n − 2)x+ · · · · · · 

24/(1 − x) = 4 + 4x 4x + 4xn ++ · · · · · · 

Therefore, 
4 

G(x) = 2xG(x) + 3x 2G(x) +
1− x 

+ (f(0) − 4) + (f(1) − 2f(0) − 4)x 

4 
= 2xG(x) + 3x 2G(x) +

1− x 
+ (1 − 4) + (6 − 2− 4)x 

4 
= 2xG(x) + 3x 2G(x) +

1− x 
− 3, 

It follows that 
4 

G(x)(1 − 2x − 3x 2) =
1− x 

− 3, 

and hence 
4 

1− x 
− 3 

G(x) = 
(1 + x)(1 − 3x) 

4 3 
= 

(1 − x)(1 + x)(1 − 3x)
− 

(1 + x)(1 − 3x) 
4− 3(1 − x)

= 
(1 − x)(1 + x)(1 − 3x) 

3x + 1 
= 

(1 − x)(1 + x)(1 − 3x)
. (1) 
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(b)	 Find a closed form for f(n). Hint: Find numbers a, b, c, d, e, g such that 

a b c 
G(x) = + + .

1 + dx 1 + ex 1 + gx 

Solution. From (1) and the method of partial fractions, we conclude that d, e, g = −1, 1, −3, re
spectively. So we want a, b, c such that 

3x + 1 a b c 
= + +

(1 − x)(1 + x)(1 − 3x) 1− x 1 + x 1− 3x 
(2) 

3x + 1 = a(1 + x)(1 − 3x) + b(1 − x)(1 − 3x) + c(1 − x)(1 + x). (3) 

Setting x = 1 in (3), we conclude that 4 = a 2 · (−2), so · 

a = −1. 

Setting x = −1 in (3), we conclude that 4− 3 2 = b 2 4, so · · · 

1 
b = .− 

4

Setting x = 1/3 in (3), we conclude that 4− 3(2/3) = c · (2/3)(4/3), so 

9 
c =

4
. 

So from (1) and (2), we have 

1/4 9/4 
G(x) = 

−1
+ + .

1− x 1 + x 1− 3x 

Now the coefficient of xn in a/(1 − x) is a, the coefficient in b/(1 + x) is b(−1)n and the coefficient 
in c/(1 − 3x) is c3n. For n ≥ 2, the coefficient in G(x) is the sum of these coefficients. So 

−1 +
(−1)n 9

3n =
3n+2 + (−1)n 

− 1.f(n) = +
4 4 4 

Appendix 

Finding a Generating Function for Fibonacci Numbers 

The Fibonacci numbers are defined by: 

f0 ::= 0 
f1 ::= 1 
fn ::= fn−1 + fn−2 (for n ≥ 2) 
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Let F be the generating function for the Fibonacci numbers, that is, 

F (x) ::= f0 + f1x + f2x 2 + f3x 3 + f4x 4 + · · · 

So we need to derive a generating function whose series has coefficients: 

�0, 1, f1 + f0, f2 + f1, f3 + f2, . . . � 

Now we observe that 

� 0, 1, 0, 0, 0,	 x. . . � ←→ 
� 0, f0, f1, f2, f3, . . . � ←→ xF (x) 

+	 � 0, 0, f0, f1, f2, . . . � ←→ x2F (x) 
� 0, 1 + f0, f1 + f0, f2 + f1, f3 + f2, . . . � ←→ x + xF (x) + x2F (x) 

This sequence is almost identical to the right sides of the Fibonacci equations. The one blemish is 
that the second term is 1 + f0 instead of simply 1. But since f0 = 0, the second term is ok. 

So we have 

F (x) = x + xF (x) + x 2F (x). 
x 

F (x) = .	 (4)
21− x− x

Finding a Closed Form for the Coefficients 

Now we expand the righthand side of (4) into partial fractions. To do this, we first factor the 
denominator 

21− x− x = (1− α1x)(1 − α2x) 

1	 1where α1 = 2(1 + 
√

5) and α2 = 2(1 −
√

5) by the quadratic formula. Next, we find A1 and A2 

which satisfy: 
x	 A2

F (x) = = 
A1 +

1− x− x 1− α1x 1− α2x	
(5)

2 

Now the coefficient of xn in F (x) will be A1 times the coefficient of xn in 1/(1−α1x) plus A2 times 
nthe coefficient of xn in 1/(1 − α2x). The coefficients of these fractions will simply be the terms α1 

nand α2 because 

1 
= 1 + α1x + α2 

1− α1x	 1x 2 + · · · 

1 
= 1 + α2x + α2 

1− α2x	 2x 2 + · · · 

by the formula for geometric series. 

So we just need to find find A1 and A2. We do this by plugging values of x into (5) to generate 
linear equations in A1 and A2. It helps to note that from (5), we have 

x = A1(1 − α2x) + A2(1 − α1x), 
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so simple values to use are x = 0 and x = 1/α2. We can then find A1 and A2 by solving the linear 
equations. This gives: 

1 1 
A1 = = 

α1 − α2 
√

5 
1 

A2 = −A1 = −√
5 

Substituting into (5) gives the partial fractions expansion of F (x): 

1 1 1 
F (x) = √

5 1− α1x 
− 

1− α2x
. 

So we conclude that the coefficient, fn, of xn in the series for F (x) is 

αn 
1 − αn 

fn = √
5 

2 �� � 
1−
√

5 
� �n n

1 1 +
√

5 
�

= √
5 2 

− 
2 
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