Solutions to In-Class Problems Week 11, Wed.

Problem 1. Define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ recursively by the rules

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=6 \\
& f(n)=2 f(n-1)+3 f(n-2)+4 \quad \text { for } n \geq 2 .
\end{aligned}
$$

(a) Find a closed form for the generating function

$$
G(x)::=f(0)+f(1) x+f(2) x^{2}+\cdots+f(n) x^{n}+\cdots .
$$

Solution.

$$
\begin{aligned}
& G(x)=f(0)+f(1) x+f(2) x^{2}+\cdots+\quad f(n) x^{n}+\cdots \\
& 2 x G(x)=2 f(0) x+2 f(1) x^{2}+\cdots+2 f(n-1) x^{n}+\cdots \\
& 3 x^{2} G(x)=\quad 3 f(0) x^{2}+\cdots+3 f(n-2) x^{n}+\cdots \\
& 4 /(1-x)=4+4 x \quad 4 x^{2}+\cdots+\quad 4 x^{n}+\cdots
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
G(x) & =2 x G(x)+3 x^{2} G(x)+\frac{4}{1-x}+(f(0)-4)+(f(1)-2 f(0)-4) x \\
& =2 x G(x)+3 x^{2} G(x)+\frac{4}{1-x}+(1-4)+(6-2-4) x \\
& =2 x G(x)+3 x^{2} G(x)+\frac{4}{1-x}-3,
\end{aligned}
$$

It follows that

$$
G(x)\left(1-2 x-3 x^{2}\right)=\frac{4}{1-x}-3,
$$

and hence

$$
\begin{align*}
G(x) & =\frac{\frac{4}{1-x}-3}{(1+x)(1-3 x)} \\
& =\frac{4}{(1-x)(1+x)(1-3 x)}-\frac{3}{(1+x)(1-3 x)} \\
& =\frac{4-3(1-x)}{(1-x)(1+x)(1-3 x)} \\
& =\frac{3 x+1}{(1-x)(1+x)(1-3 x)} . \tag{1}
\end{align*}
$$

[^0](b) Find a closed form for $f(n)$. Hint: Find numbers a, b, c, d, e, g such that
$$
G(x)=\frac{a}{1+d x}+\frac{b}{1+e x}+\frac{c}{1+g x} .
$$

Solution. From (1) and the method of partial fractions, we conclude that $d, e, g=-1,1,-3$, respectively. So we want a, b, c such that

$$
\begin{align*}
\frac{3 x+1}{(1-x)(1+x)(1-3 x)} & =\frac{a}{1-x}+\frac{b}{1+x}+\frac{c}{1-3 x} \tag{2}\\
3 x+1 & =a(1+x)(1-3 x)+b(1-x)(1-3 x)+c(1-x)(1+x) . \tag{3}
\end{align*}
$$

Setting $x=1$ in (3), we conclude that $4=a \cdot 2 \cdot(-2)$, so

$$
a=-1
$$

Setting $x=-1$ in (3), we conclude that $4-3 \cdot 2=b \cdot 2 \cdot 4$, so

$$
b=-\frac{1}{4} .
$$

Setting $x=1 / 3$ in (3), we conclude that $4-3(2 / 3)=c \cdot(2 / 3)(4 / 3)$, so

$$
c=\frac{9}{4} .
$$

So from (1) and (2), we have

$$
G(x)=\frac{-1}{1-x}+\frac{1 / 4}{1+x}+\frac{9 / 4}{1-3 x}
$$

Now the coefficient of x^{n} in $a /(1-x)$ is a, the coefficient in $b /(1+x)$ is $b(-1)^{n}$ and the coefficient in $c /(1-3 x)$ is $c 3^{n}$. For $n \geq 2$, the coefficient in $G(x)$ is the sum of these coefficients. So

$$
f(n)=-1+\frac{(-1)^{n}}{4}+\frac{9}{4} 3^{n}=\frac{3^{n+2}+(-1)^{n}}{4}-1 .
$$

Appendix

Finding a Generating Function for Fibonacci Numbers

The Fibonacci numbers are defined by:

$$
\begin{aligned}
& f_{0}::=0 \\
& f_{1}::=1 \\
& f_{n}::=f_{n-1}+f_{n-2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Let F be the generating function for the Fibonacci numbers, that is,

$$
F(x)::=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}+\cdots
$$

So we need to derive a generating function whose series has coefficients:

$$
\left\langle 0,1, f_{1}+f_{0}, f_{2}+f_{1}, f_{3}+f_{2}, \ldots\right\rangle
$$

Now we observe that

This sequence is almost identical to the right sides of the Fibonacci equations. The one blemish is that the second term is $1+f_{0}$ instead of simply 1 . But since $f_{0}=0$, the second term is ok.

So we have

$$
\begin{align*}
& F(x)=x+x F(x)+x^{2} F(x) . \\
& F(x)=\frac{x}{1-x-x^{2}} . \tag{4}
\end{align*}
$$

Finding a Closed Form for the Coefficients

Now we expand the righthand side of (4) into partial fractions. To do this, we first factor the denominator

$$
1-x-x^{2}=\left(1-\alpha_{1} x\right)\left(1-\alpha_{2} x\right)
$$

where $\alpha_{1}=\frac{1}{2}(1+\sqrt{5})$ and $\alpha_{2}=\frac{1}{2}(1-\sqrt{5})$ by the quadratic formula. Next, we find A_{1} and A_{2} which satisfy:

$$
\begin{equation*}
F(x)=\frac{x}{1-x-x^{2}}=\frac{A_{1}}{1-\alpha_{1} x}+\frac{A_{2}}{1-\alpha_{2} x} \tag{5}
\end{equation*}
$$

Now the coefficient of x^{n} in $F(x)$ will be A_{1} times the coefficient of x^{n} in $1 /\left(1-\alpha_{1} x\right)$ plus A_{2} times the coefficient of x^{n} in $1 /\left(1-\alpha_{2} x\right)$. The coefficients of these fractions will simply be the terms α_{1}^{n} and α_{2}^{n} because

$$
\begin{aligned}
& \frac{1}{1-\alpha_{1} x}=1+\alpha_{1} x+\alpha_{1}^{2} x^{2}+\cdots \\
& \frac{1}{1-\alpha_{2} x}=1+\alpha_{2} x+\alpha_{2}^{2} x^{2}+\cdots
\end{aligned}
$$

by the formula for geometric series.
So we just need to find find A_{1} and A_{2}. We do this by plugging values of x into (5) to generate linear equations in A_{1} and A_{2}. It helps to note that from (5), we have

$$
x=A_{1}\left(1-\alpha_{2} x\right)+A_{2}\left(1-\alpha_{1} x\right),
$$

so simple values to use are $x=0$ and $x=1 / \alpha_{2}$. We can then find A_{1} and A_{2} by solving the linear equations. This gives:

$$
\begin{aligned}
A_{1} & =\frac{1}{\alpha_{1}-\alpha_{2}}=\frac{1}{\sqrt{5}} \\
A_{2} & =-A_{1}=-\frac{1}{\sqrt{5}}
\end{aligned}
$$

Substituting into (5) gives the partial fractions expansion of $F(x)$:

$$
F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\alpha_{1} x}-\frac{1}{1-\alpha_{2} x}\right) .
$$

So we conclude that the coefficient, f_{n}, of x^{n} in the series for $F(x)$ is

$$
\begin{aligned}
f_{n} & =\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\sqrt{5}} \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

[^0]: Copyright © 2005, Prof. Albert R. Meyer.

