$$
\begin{gathered}
\text { DAGs, } \\
\text { Partial Orders, } \\
\text { Scheduling }
\end{gathered}
$$

Relations and Graphs

set of vertices V
set of edges $E, E \subseteq V \times V$

Normal Person's Graph

(Formally the same as
a binary relation on V.)
$V=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
$E=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{c}, \mathrm{b})\}$

Reflexive Transitive Closure

$$
a_{1} R^{*} a_{2} \quad \text { iff }
$$

a_{1} and a_{2} are connected by path

Some Course 6 Prerequisites

- $18.01 \rightarrow 6.042$
- 18.03, $8.02 \rightarrow 6.002$
- $18.01 \rightarrow 18.02$
- $6.001,6.002 \rightarrow 6.004$
- $18.01 \rightarrow 18.03 \quad \cdot 6.001,6.002 \rightarrow 6.003$
- $8.01 \rightarrow 8.02 \quad$ • $\quad 6.004 \rightarrow 6.033$
- $6.001 \rightarrow 6.034 \quad$ • $\quad 6.033 \rightarrow 6.857$
- $6.042 \rightarrow 6.046$
- $\quad 6.046 \rightarrow 6.840$

Indirect Prerequisites

18.01 is indirect prereq. of 6.840

Classes with no prereqs

8.8 8.01 8.001
"Freshman classes"
d is a Freshman class iff
nothing $\rightarrow d$

Minimal elements

d is minimal for \rightarrow there is no c s.t. $c \rightarrow d$

minimal not minimum

minimum means "smallest"
-- a prereq. for every class
no minimum in this example

Team Problem

Problem 1,2

Prerequisite graph

What if there is a cycle in this graph?
-- a path from class c to class d and back to class c ?

No one can graduate!
Comm. on Curricula \& Registrar are supposed to prevent cycles.

DAG's = Partial Orders

Theorem:

- The path relation of a DAG is a partial order.
- The graph of a partial order is a DAG.

Constructing the DAG

- $18.01 \rightarrow 6.042$
- $18.03,8.02 \rightarrow 6.002$
- $18.01 \rightarrow 18.02$
- $6.001,6.002 \rightarrow 6.004$
- $18.01 \rightarrow 18.03$
- $6.001,6.002 \rightarrow 6.003$
- $8.01 \rightarrow 8.02$
- $\quad 6.004 \rightarrow 6.033$
- $6.001 \rightarrow 6.034$
- $\quad 6.033 \rightarrow 6.857$
- $6.042 \rightarrow 6.046$
- $\quad 6.046 \rightarrow 6.840$

Identify Minimal Elements

Directed Acyclic Graph (DAG)

18.01
8.01
6.001

Constructing the DAG

- $18.01 \rightarrow 6.042$
- $18.03,8.02 \rightarrow 6.002$
- $18.01 \rightarrow 18.02$
- $6.001,6.002 \rightarrow 6.004$
- $18.01 \rightarrow 18.03$
- $6.001,6.002 \rightarrow 6.003$
- $8.01 \rightarrow 8.02 \quad$ • $\quad 6.004 \rightarrow 6.033$
- $6.001 \rightarrow 6.034 \quad$ • $\quad 6.033 \rightarrow 6.857$
- $6.042 \rightarrow 6.046$
- $\quad 6.046 \rightarrow 6.840$

Remove minimal elements

Constructing the DAG

-	6.042	- $18.03,8.02 \rightarrow 6.002$	
-	18.02	-	$6.002 \rightarrow 6.004$
-	18.03	-	$6.002 \rightarrow 6.003$
-	8.02	-	$6.004 \rightarrow 6.033$
-	6.034	-	$6.033 \rightarrow 6.857$
- $6.042 \rightarrow 6.046$		$6.046 \rightarrow 6.840$	

Remove minimal elements

Constructing the DAG

$\begin{array}{lrll}\text { - } & 6.042 & \text { • } 18.03,8.02 \rightarrow 6.002 \\ \text { - } & 18.02 & \text { - } & 6.002 \rightarrow 6.004 \\ \text { - } & 18.03 & \text { - } & 6.002 \rightarrow 6.003 \\ \text { - } & 8.02 & \text { - } & 6.004 \rightarrow 6.033 \\ \text { - } & 6.034 & \text { - } & 6.033 \rightarrow 6.857 \\ \text { - } & 6.042 \rightarrow 6.046 & & 6.046 \rightarrow 6.840\end{array}$
Identify new minimal elements

Directed Acyclic Graph (DAG)

continue in this way...

Topological sort

- Is there a way of graduating? (in any number of semesters?)
- Yes - take a minimal remaining course each semester

Parallel Task Scheduling

- 6 terms are necessary to complete the curriculum
- and sufficient (if you can take unlimited courses per term...)

Antichains

Set of courses that can be taken in any order:
Any two courses in set are
incomparable
and Sufficient...

Parallel Task Scheduling

Theorem: If the longest chain has size t, then the elements can be partitioned into
t successive antichains, with no element in any block preceding anything in a preceding block

Why sufficient?

Take
$B_{i}=\{a \mid$ largest chain ending in a is of size $i\}$

If there is a y in B_{i} such that $x \rightarrow y$ and x not in $B_{1} \ldots B_{i-1}$ then there is a chain of size $>i$ ending in y
and Sufficient...

Minimum "Parallel" Time

parallel time $=$ max chain size.
required \# processors

$$
\leq \text { max antichain size }
$$

Minimum "Parallel" Time

but 5-course term not necessary.
Possible that min-time \#processors
$<$ max antichain size

3 Subjects per Term Possible

A 3-course term is necessary

- 15 subjects
- max chain size $=\mathbf{6}$
- size of some block must be

$$
\geq\lceil 15 / 6\rceil=3 .
$$

\therefore to finish in 6 terms, must take ≥ 3 classes some term

Dilworth's Lemma

A partial order on n items has

- a chain of size $\geq t$, or
- or an antichain of size $\geq\left\lceil\frac{n}{t}\right\rceil$ for all $1 \leq t \leq n$.

Height/Birthday Partial Order

Two students are related to each other iff one is shorter and younger than the other

$$
\left(s_{1}, a_{1}\right) \preccurlyeq\left(s_{2}, a_{2}\right) \text { iff }
$$

$$
\left(s_{1} \leq s_{2}\right) \text { and }\left(a_{1} \leq a_{2}\right)
$$

Height/Birthday Partial Order

Chain of students:

get older as they get taller. AntiChain of students:
get younger as they get taller.
In

Team Problem

Problem 4

Dilworth Demo

Older

