Induction II Strong Induction Well-order principle

Ordinary Induction

Ordinary induction allows proving $P(n+1)$ from $P(n)$ only

Why? Seems unfair, since started at 0 , then showed
$0 \rightarrow 1,1 \rightarrow 2,2 \rightarrow 3, \ldots, n-1 \rightarrow n$.
So by the time we got to $n+1$, already
know all of
$P(0), P(1), \ldots, P(n)$

Strong Induction

0 red and
(if everything $\leq n$ red then $n+1$ red)
then everything is red.
$\mathrm{R}(0), \underline{[\forall n[\forall k \leq n R(k)] \rightarrow \mathrm{R}(n+1)}]$
$\forall m \quad R(m)$

Strong Induction

Allows proving $P(n+1)$ from all of
$P(0), P(1), \ldots, P(n)$, instead of just $P(n)$.

Strong vs. Ordinary Induction

So why use Strong?
-- Convenience: no need to include $\forall k \leq n$ all over.

Problems

Class Problem 1

哃: Well-ordering principle
 Every nonempty set of nonnegative integers has a least element.
 Familiar? Now you mention it, Yes. Obvious? Yes.
 Trivial? Yes. But watch out:

Well-ordering principle

Every nonempty set of nonnegative integers
has a least element.

NO!

Proof using well-order principle

Theorem: $\sqrt{2}$ is irrational.
Proof (by contradiction):

- Suppose $\sqrt{2}$ was rational.
- Choose m, n integers without common prime factors (always possible) such that

$$
\sqrt{2}=\frac{m}{n}
$$

- Show that $m \& n$ are both even, a contradiction!

Well-ordering principle

Theorem: Every integer >1 is a product of primes.

Proof: (by contradiction) Suppose not. Then set of nonproducts is nonempty. By WOP, there is a least $n>1$ that is not a product of primes.
In particular, n is not prime.

Proof using well-order principle

- Choose m, n integers without common prime factors (always possible)
- WHY IS IT ALWAYS POSSIBLE?

First: can assume $m \geq 0$
Next: by WOP, pick minimum m_{0} such that $q=m_{0} / n_{0}$ for some n_{0}

If m_{0} and n_{0} had common factor p then could write $q=\left(m_{d} / p\right) /\left(n_{d} / p\right)$
Contradicts minimality of m_{0} !

Well-ordering principle

Theorem: Every integer > 1 is a product of primes.

Proof: ...So $n=k \cdot m$ for integers k, m where $n>k, m>1$.
Since k, m smaller than the least nonproduct, both are prime products, eg.,

$$
\begin{aligned}
k & =p_{1} \cdot p_{2} \cdots p_{94} \\
m & =q_{1} \cdot q_{2} \cdots q_{214}
\end{aligned}
$$

Problems

Class Problem 2
...So

$$
n=k \cdot m=p_{1} \cdot p_{2} \cdot \cdots p_{94} \cdot q_{1} \cdot q_{2} \cdot \cdot q_{214}
$$

is a prime product, a contradiction.
\therefore The set of nonproducts >1 must be empty.

QED

Well-ordering principle

Theorem: Every integer > 1 is a product of primes.
must be emply. QED

