
Massachusetts Institute of Technology Course Notes, Week 14 
6.042J/18.062J, Fall ’05: Mathematics for Computer Science December 2 
Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised December 8, 2005, 61 minutes 

Missed Expectations? 

In the previous notes, we saw that the average value of a random quantity is captured 
by the mathematical concept of the expectation of a random variable, and we calculated 
expectations for several kinds of random variables. Now we will see two things that 
make expectations so useful. First, they are often very easy to calculate due to the fact 
that they obey linearity. Second, once you know what the expectation is, you can also get 
some type of bound on the probability that you are far from the expectation —that is, you 
can show that really weird things are not that likely to happen. How good a bound you 
can get depends on what you know about your distribution, but don’t worry, even if you 
know next to nothing, you can still say something relatively interesting. 

1 Linearity of Expectation 

1.1 Expectation of a Sum 

Expected values obey a simple, very helpful rule called Linearity of Expectation. Its sim
plest form says that the expected value of a sum of random variables is the sum of the 
expected values of the variables. 

Theorem 1.1. For any random variables R1 and R2, 

E [R1 + R2] = E [R1] + E [R2] . 

Proof. Let T ::= R1 + R2. The proof follows straightforwardly by rearranging terms from 
the definition of E [T ]. 

E [R1 + R2] ::= E [T ]� 
::= 

s∈S 

T (s) · Pr {s} � 
= 

s∈S 

(R1(s) + R2(s)) · Pr {s} � � 

(Def. of T ) 

= 
s∈S 

R1(s) Pr {s} + 
s∈S 

R2(s) Pr {s} (rearranging terms) 

= E [R1] + E [R2] . 
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Similarly, we have 

Lemma 1.2. For any random variable R and constant a ∈ R, 

E [aR] = a E [R] . 

The proof follows easily from the definition of expectation, and we omit it. 

Combining Theorem 1.1 and Lemma 1.2, we conclude 

Theorem 1.3 (Linearity of Expectation). For all random variables R1, R2 and constants a1, a2 ∈
R, 

E [a1R1 + a2R2] = a1 E [R1] + a2 E [R2] . 

In other words, expectation is a linear function. The rule and its proof extends directly to 
cover more than two random variables: 

Corollary 1.4. For any random variables R1, . . . , Rk and constants a1, . . . , ak ∈ R, 

k� k� 
E aiRi = ai E [Ri] . 

i=1 i=1 

The great thing about linearity of expectation is that no independence is required. This is 
really useful, because dealing with independence is a pain, and we often need to work 
with random variables that are not independent. 

1.2 Expected Value of Two Dice 

What is the expected value of the sum of two fair dice? 

Let the random variable R1 be the number on the first die, and let R2 be the number on 
the second die. We observed earlier that the expected value of one die is 3.5. We can find 
the expected value of the sum using linearity of expectation: 

E [R1 + R2] = E [R1] + E [R2] = 3.5 + 3.5 = 7. 

Notice that we did not have to assume that the two dice were independent. The expected 
sum of two dice is 7, even if they are connected together!1 

Proving that the expected sum is 7 with a tree diagram would be hard; there are 36 cases. 
And if we did not assume that the dice were independent, the job would be a nightmare! 

1But each die must remain fair after the connection. 
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1.3 The HatCheck Problem 

There is a dinner party where n men check their hats. The hats are mixed up during 
dinner, so that afterward each man receives a random hat. In particular, each man gets 
his own hat with probability 1/n. What is the expected number of men who get their own 
hat? 

Without linearity of expectation, this would be a very difficult question to answer. We 
might try the following. Let the random variable R be the number of men that get their 
own hat. We want to compute E [R]. By the definition of expectation, we have: 

∞

E [R] = k Pr {R = k}·
k=0 

Now we’re in trouble, because evaluating Pr {R = k} is a mess and we then need to sub
stitute this mess into a summation. Furthermore, to have any hope, we would need to fix 
the probability of each permutation of the hats. For example, we might assume that all 
permutations of hats are equally likely. 

Now let’s try to use linearity of expectation. As before, let the random variable R be the 
number of men that get their own hat. The trick is to express R as a sum of indicator 
variables. In particular, let Ri be an indicator for the event that the ith man gets his own 
hat. That is, Ri = 1 is the event that he gets his own hat, and Ri = 0 is the event that 
he gets the wrong hat. The number of men that get their own hat is the sum of these 
indicators: 

R + Rn = R1 + R2 + · · ·
These indicator variables are not mutually independent. For example, if n − 1 men all get 
their own hats, then the last man is certain to receive his own hat. But, since we plan to 
use linearity of expectation, we don’t have worry about independence! 

Let’s take the expected value of both sides of the equation above and apply linearity of 
expectation: 

E [R] = E [ + Rn]R1 + R2 + · · ·
= E [R1] + E [R2] + · · ·+ E [Rn] 

Since the Ri’s are indicator variables, E [Ri] = Pr {Ri} and since every man is as likely to 
get one hat as another, this is just 1/n. Putting all this together, we have: 

E [R] = E [R1] + E [ + E [Rn]R2] + · · ·
+ Pr {Rn = 1}= Pr {R1 = 1}+ Pr {R2 = 1}+ · · ·

1 
= n = 1.· 

n 

So we should expect 1 man to get his own hat back on average! 
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Notice that we did not assume that all permutations of hats are equally likely or even that 
all permutations are possible. We only needed to know that each man received his own 
hat with probability 1/n. 

1.4 Expectation of a Binomial Distribution 

Suppose that we independently flip n biased coins, each with probability p of coming up 
heads. What is the expected number that come up heads? 

Let Hn,p be the number of heads after the flips. Then Hn,p has the binomial distribution 
with parameters n and p. Now let Ik be the indicator for the kth coin coming up heads. 
Since Ik is an indicator variable with probability p of being 1, we know that 

E [Ik] = p. 

But 
n� 

Hn,p = Ik, 
k=1 

so by linearity � � 
n� n� n� 

E [Hn,p] = E Ik = E [Ik] = p = pn. 
k=1 k=1 k=1 

numbThat is, the expectation of an (n, p)binomially distributed variable is pn. 

2 The Coupon Collector Problem 

Every time I purchase a kid’s meal at Taco Bell, I am graciously presented with a miniature 
“Racin’ Rocket” car together with a launching device which enables me to project my new 
vehicle across any tabletop or smooth floor at high velocity. Truly, my delight knows no 
bounds. 

There are n different types of Racin’ Rocket car (blue, green, red, gray, etc.). The type of 
car awarded to me each day by the kind woman at the Taco Bell register appears to be 
selected uniformly and independently at random. What is the expected number of kids 
meals that I must purchase in order to acquire at least one of each type of Racin’ Rocket 
car? 

The same mathematical question shows up in many guises: for example, what is the ex
pected number of people you must poll in order to find at least one person with each 
possible birthday? Here, instead of collecting Racin’ Rocket cars, you’re collecting birth
days. The general question is commonly called the coupon collector problem after yet 
another interpretation. 
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2.1 A Solution Using Linearity of Expectation 

Linearity of expectation is somewhat like induction and the pigeonhole principle; it’s a 
simple idea that can be used in all sorts of ingenious ways. For example, we can use 
linearity of expecatation in a clever way to solve the coupon collector problem. Suppose 
there are five different types of Racin’ Rocket, and I receive this sequence: 

blue green green red blue orange blue orange gray 

Let’s partition the sequence into 5 segments: 

blue green green red blue orange blue orange gray���� � �� � � �� � � �� � � �� � 
X0 X1 X2 X3 X4 

The rule is that a segment ends whenever I get a new kind of car. For example, the middle 
segment ends when I get a red car for the first time. In this way, we can break the problem 
of collecting every type of car into stages. Then we can analyze each stage individually 
and assemble the results using linearity of expectation. 

Let’s return to the general case where I’m collecting n Racin’ Rockets. Let Xk be the length 
of the kth segment. The total number of kid’s meals I must purchase to get all n Racin’ 
Rockets is the sum of the lengths of all these segments: 

T = X0 + X1 + + Xn−1· · ·

Now let’s focus our attention of the Xk, the length of the kth segment. At the beginning of 
segment k, I have k different types of car, and the segment ends when I acquire a new type. 
When I own k types, each kid’s meal contains a type that I already have with probability 
k/n. Therefore, each meal contains a new type of car with probability 1−k/n = (n−k)/n. 
Thus, the expected number of meals until I get a new kind of car is n/(n−k) by the “mean 
time to failure” formula that we worked out last time. So we have: 

n
E [Xk] = 

n − k 

Linearity of expecatation, together with this observation, solves the coupon collector 
problem: 

E [T ] = E [X0 + X1 + + Xn−1]· · ·
= E [X0] + E [X1] + + E [Xn−1]· · ·

n n n n n 
= 

n − 0
+ 

n − 1
+ · · ·+ + + 

3 2 1 
1 1 1 1 1 

= n + + + + 
n n − 1

+ · · ·
3 2 1 

= nHn 



� 

� 

6 Course Notes, Week 14: Missed Expectations? 

The summation on the nexttolast line is the nth harmonic sum with the terms in reverse 
order. As you may recall, this sum is denoted Hn and is approximately ln n. 

Let’s use this general solution to answer some concrete questions. For example, the ex
pected number of die rolls required to see every number from 1 to 6 is: 

6H6 = 14.7 . . . 

And the expected number of people you must poll to find at least one person with each 
possible birthday is: 

365H365 = 2364.6 . . . 

3 Conditional Expectation 

Just like event probabilities, expectations can be conditioned on some event. 

Definition 3.1. We define the conditional expectation E [R | A] of a random variable R given 
event A: � 

E [R | A] ::= Pr {R = r A} .r · |
r 

In other words, it is the expected value of the variable R once we skew the distribution of 
R to be conditioned on event A. 

Example 3.2. Let D be the outcome of a roll of a fair die. What is E [D D ≥ 4]?| 

6

Pr {D = i D ≥ 4} = 1 0 + 2 0 + 3 0 + 4 1 + 5 1 + 6 = 5.
3 3 3

i · | · · · · · · 1 
i=1 

It is easy to see that the rules for expectation will extend to conditional expectation. For 
example, conditional expectation will also be linear. 

Theorem 3.3. For any two random variables R1, R2, constants a1, a2 ∈ R, and event A, 

E [a1R1 + a2R2 | A] = a1 E [R1 A] + a2 E [R2 A] .| | 

A real benefit of conditional expectation is the way it lets us divide complicated expecta
tion calculations into simpler cases. 

Theorem 3.4 (Law of Total Expectation). If the sample space is the union of the pairwise 
disjoint events A1, A2, . . . , then 

E [R] = E [R Ai] Pr {Ai} .|
i 
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Proof. 

E [R] = r Pr {R = r}· 
r 

= r Pr {R = r Ai} Pr {Ai} (Law of Total Probability) · |
r i 

= r Pr {R = r Ai} Pr {Ai} (distribute constant r)· |
r i 

= r Pr {R = r Ai} Pr {Ai} (exchange order of summation) · |
i� r � 

= Pr {Ai} r Pr {R = r Ai} (factor constant Pr {Ai})· |
i� r 

= Pr {Ai} E [R Ai] . (Def. 3.1)|
i 

Example 3.5. Half the people in the world are male, half female. The expected height of a 
randomly chosen male is 5�11��, while the expected height of a randomly chosen female is 
5�5��. What is the expected height of a randomly chosen individual? 

Let H(P ) be the height of the random person P . The events M ::=“P is male” and F ::=“P 
is female” are a partition of the sample space. Then 

E [H] = E [H M ] Pr {M} + E [H F ] Pr {F}| 
1 

|
1 

= 5�11�� · + 5�5�� ·
2 2 

= 5�8��. 

We will see in the following sections that the Law of Total Expectation has much more 
power than one might think. 

4 The Expected Value of a Product 

4.1 The Product of Independent Expectations 

We have determined that the expectation of a sum is the sum of the expectations. The 
same is not always true for products: in general, the expectation of a product need not 
equal the product of the expectations. But it is true in an important special case, namely, 
when the random variables are independent. 

Lemma 4.1. If R1 and R2 are independent random variables, then 

E [R1 | R2 = a] = E [R1] . 
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The Lemma follows immediately from Definition 3.1 of conditional expectation and the 
fact that Pr {R1 = r} = Pr {R1 = r R2 = a}.| 

Theorem 4.2. For any two independent random variables R1, R2, 

E [R1 R2] = E [R1] E [R2] .· · 

Proof. We apply the Law of Total Expectation by conditioning on the value of R1. 

E [ R2] = E [R1 · R2 | R1 = r] Pr {R1 = r} (Thm 3.4)R1 · · 
r∈range(R1) 

= E [r · R2 | R1 = r] Pr {R1 = r}· 
r 

= 
r 

r · E [R2 | R1 = r] · Pr {R1 = r} � 

(Lemma 1.2) 

= 
r 

r · E [R2] · Pr {R1 = r} � 

Lemma 4.1 

= E [R2] 
r 

r · Pr {R1 = r} (factor out constant E [R2]) 

= E [R2] · E [R1] . 

Theorem 4.2 extends routinely to a collection of mutually independent variables. 

Corollary 4.3. If random variables R1, R2, . . . , Rk are mutually independent, then 

k k

E Ri = E [Ri] . 
i=1 i=1 

4.2 The Product of Two Dice 

Suppose we throw two independent, fair dice and multiply the numbers that come up. 
What is the expected value of this product? 

Let random variables R1 and R2 be the numbers shown on the two dice. We can compute 
the expected value of the product as follows: 

E [R1 R2] = E [R1] E [R2] = 3.5 3.5 = 12.25. (1)· · · 

Here the first equality holds by Theorem 4.2 because the dice are independent. 

Now suppose that the two dice are not independent; in fact, assume that the second die 
is always the same as the first. In this case, the product of expectations will not equal the 
expectation of the product. 
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To verify this, let random variables R1 and R2 be the numbers shown on the two dice. We 
can compute the expected value of the product without Theorem 4.2 as follows: 

E [ R2] = E R2 (R2 = R1)R1 · 1


6


R2 = i2 Pr 1 = i2 · 
i=1


6


= i2 Pr {R1 = i}· 
i=1 

12 22 32 42 52 62 

= + + + + + 
6 6 6 6 6 6 
91 

= 
6


= 12.25


= E [R1] E [R2] . from (1)· 

5 Expect the Mean 

We have seen several examples of random variables that never take a value equal to their 
mean. But experience suggests that we can expect the values of a variable to be near its 
mean – usually – which is why the mean is also called the “expectation.” In other words, 
the values of a random variable probably won’t deviate very much from the mean. We will 
describe some basic results about this central topic of deviation from the mean, and we will 
indicate how these results apply for testing hypotheses and estimating by sampling. 

In these notes we develop two results. The first is Markov’s Theorem, which gives a 
simple, but typically coarse, upper bound on the probability that the value of a random 
variable is more than a certain multiple of its mean. Markov’s result holds if we know 
nothing about a random variable except what its mean is and that its values are non
negative. Accordingly, Markov’s Theorem is very general, but also is much weaker than 
results which take into account more information about the distribution of the variable. 

In many situations, we not only know the mean, but also another numerical quantity 
called the variance of the random variable. Our second basic result is Chebyshev’s The
orem, which combines Markov’s Theorem and information about the variance to give 
more refined bounds. We will also examine properties of variance and ways to calculate 
it. 

6 Markov’s Theorem 

Markov’s theorem gives a generally rough estimate of the probability that a random vari
able takes a value much larger than its mean. 
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The idea behind Markov’s Theorem can be explained with a simple example of intelligence 
quotient, IQ. IQ was devised so that the average IQ measurement would be 100. Now from 
this fact alone we can conclude that at most 1/2 the population can have an IQ of 200 or 
more, because if more than half had an IQ of 200, then the average would have to be more 
than (1/2)200 = 100, contradicting the fact that the average is 100. So the probability that 
a randomly chosen person has an IQ of 200 or more is at most 1/2. Of course this is not 
a very strong conclusion; in fact no IQ of over 200 has ever been recorded. But by the 
same logic, we can also conclude that at most 2/3 of the population can have an IQ of 
150 or more. IQ’s of over 150 have certainly been recorded, though again, a much smaller 
fraction of the population actually has an IQ that high. 

But although these conclusions about IQ are weak, they are actually the strongest possible 
general conclusions that can be reached about a nonnegative random variable using only 
the fact that its mean is 100. For example, if we choose a random variable equal to 200 
with probability 1/2, and 0 with probability 1/2, then its mean is 100, and the probability 
of a value of 200 or more is really 1/2. So we can’t hope to get a upper better bound on 
the probability of 200 than 1/2. 

Theorem 6.1 (Markov’s Theorem). If R is a nonnegative random variable, then for all x > 0 

Pr {R ≥ x} ≤ 
E [R] 

. 
x 

Proof. We will show that E [R] ≥ x Pr {R ≥ x}. Dividing both sides by x gives the desired 
result. 

So let Ix be the indicator variable for the event [R ≥ x], and consider the random variable 
xIx. Note that 

R ≥ xIx, 

because at any sample point, w, 

• if R(w) ≥ x then R(w) ≥ x = x 1 = xIx(w), and ·

• if R(w) < x then R(w) ≥ 0 = x 0 = xIx(w).·

Therefore, 

E [R]	≥ E [xIx] (since R ≥ xIx) 

= x E [Ix] (linearity of E [ ])·
= x Pr {Ix = 1} (because Ix is an index vbl.) 
= x Pr {R ≥ x} . (def. of Ix) 

Markov’s Theorem is often expressed in an alternative form, stated below as an immedi
ate corollary. 
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Corollary 6.2. If R is a nonnegative random variable, then for all c ≥ 1 

1
Pr {R ≥ c E [R]} ≤ 

c
.·

Proof. In Markov’s Theorem, set x = c E [R].·

6.1 Examples of Markov’s Theorem 

Suppose that n men go to a dinner party and check their hats. At the end of the night, 
the hats are randomly permuted and returned, so each man gets his own hat back with 
probability 1/n. What is the probability that x or more men get the right hat? 

We can compute an upper bound with Markov’s Theorem. Let the random variable, R, 
be the number of men that get the right hat. In previous notes, we used linearity of 
expectation to show that E [R] = 1. By Markov’s Theorem, the probability that x or more 
men get the right hat is: 

Pr {R ≥ x} ≤ 
E [R] 1 

= . 
x x 

For example, there is no better than a 20% chance that 5 men get the right hat, regardless 
of the number of people at the dinner party. 

The Chinese Appetizer problem is very similar. In this case, n people are eating Chinese 
appetizers arranged on a circular, rotating tray. Someone then spins the tray so that each 
person receives a random appetizer. What is the probability that everyone gets the same 
appetizer as before? 

There are n equally likely orientations for the tray after it stops spinning. Everyone gets 
the right appetizer in just one of these n orientations. Therefore, the correct answer is 1/n. 

But what probability do we get from Markov’s Theorem? Let the random variable, R, be 
the number of people that get the right appetizer. You can show that E [R] = 1 (right?). 
Applying Markov’s Theorem, we find: 

Pr {R ≥ n} ≤ 
E [R] 1 

= . 
n n 

So for the Chinese appetizer problem, Markov’s Theorem is tight! 

On the other hand, Markov’s Theorem gives the same 1/n bound for the probability ev
eryone gets their hat in the hat check problem. But in reality, the probability of this event 
is 1/(n!). So for the hat check problem, Markov’s Theorem case gives probability bounds 
that are way off. 
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6.2 Markov’s Theorem for Bounded Variables 

Suppose we learn that the average IQ among MIT students is 150 (which is not true, by 
the way). What can we say about the probability that an MIT student has an IQ of more 
than 200? Markov’s theorem immediately tells us that no more than 150/200 or 3/4 of 
the students can have such a high IQ. Here we simply applied Markov’s Theorem to the 
random variable, R, equal to the IQ of a random MIT student to conclude: 

150 3
Pr {R > 200} ≤ 

E [R]
= = . 

200 200 4 

But let’s observe an additional fact (which may be true): no MIT student has an IQ less 
than 100. This means that if we let T ::= R− 100, then T is nonnegative and E [T ] = 50, so 
we can apply by Markov’s Theorem to T and conclude: 

50 1
Pr {R > 200} = Pr {T > 100} ≤ 

E [T ]
= = . 

100 100 2 

So only half, not 3/4, of the students can be as amazing as they think they are. A bit of a 
relief! 

More generally, we can get better bounds applying Markov’s Theorem to R− l instead of 
R for any lower bound l > 0 on R. 

Similarly, if we have any upper bound, u, on a random variable, S, then u − S will be a 
nonnegative random variable, and applying Markov’s Theorem to u− S will allow us to 
bound the probability that S is much less than its expectation. 

7 Chebyshev’s Theorem 

We have versions of Markov’s Theorem for the probability of deviation above the mean, 
but often we want bounds that apply to distance from the mean in either direction, that is, 
bounds on the probability that R− E [R] is large. | |

It is a bit messy to apply Markov’s Theorem directly to this problem, because it’s generally 
not easy to compute E [ R− E [R] ]. However, since R and hence R k are nonnegative | | | |
variables for any R, Markov’s inequality also applies to the event 

|
[|R
|
| k ≥ xk]. But this 

event is equivalent to the event [|R ≥ x], so we have: |

Lemma 7.1. For any random variable R, any positive integer k, and any x > 0, 

E |R| k 

. 
k 

Pr {|R| ≥ x} ≤ 
x
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The special case of this Lemma for k = 2 can be applied to bound the random variable, 
R − E [R] , that measures R’s deviation from its mean. Namely | |

2Pr {|R − E [R] ≥ x} = Pr (R − E [R])2 ≥ x 
� E [(R − E [R])2] 

, (2)
2

| ≤ 
x

where the inequality (2) follows by applying Lemma 7.1 to the nonnegative random vari
able, (R − E [R])2 . Assuming that the quantity E [(R − E [R])2] above is finite, we can 
conclude that the probability that R deviates from its mean by more than x is O(1/x2). 

Definition 7.2. The variance, Var [R], of a random variable, R, is: 

Var [R] ::= E (R − E [R])2 . 

So we can restate (2) as 

Theorem 7.3 (Chebyshev). Let R be a random variable, and let x be a positive real number. 
Then 

Var [R] 
. 

2 
Pr {|R − E [R]| ≥ x} ≤ 

x

The expression E [(R − E [R])2] for variance is a bit cryptic; the best approach is to work 
through it from the inside out. The innermost expression, R− E [R], is precisely the devia
tion of R above its mean. Squaring this, we obtain, (R− E [R])2. This is a random variable 
that is near 0 when R is close to the mean and is a large positive number when R deviates 
far above or below the mean. So if R is always close to the mean, then the variance will 
be small. If R is often far from the mean, then the variance will be large. 

7.1 Variance in Two Gambling Games 

The relevance of variance is apparent when we compare the following two gambling 
games. 

Game A: We win $2 with probability 2/3 and lose $1 with probability 1/3. 

Game B: We win $1002 with probability 2/3 and lose $2001 with probability 1/3. 

Which game is better financially? We have the same probability, 2/3, of winning each 
game, but that does not tell the whole story. What about the expected return for each 
game? Let random variables A and B be the payoffs for the two games. For example, A is 
2 with probability 2/3 and 1 with probability 1/3. We can compute the expected payoff 
for each game as follows: 

2 1
E [A] = 2 + (−1) = 1,· 

3 
· 
3 

2 1
E [B] = 1002 · + (−2001) · = 1. 

3 3 
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The expected payoff is the same for both games, but they are obviously very different! 
This difference is not apparent in their expected value, but is captured by variance. We 
can compute the Var [A] by working “from the inside out” as follows: 

A − E [A] =
1	 with probability 

with probability −2 

2 
3
1 
3 

(A − E [A])2 = 
1 with probability 
4 with probability 

2 
3
1 
3 

E 
� 
(A − E [A])2 

� 
= 1 · 2 

3 
+ 4 · 1 

3 
Var [A] = 2. 

Similarly, we have for Var [B]: � 
1001 with probability 

B − E [B] = −2002 with probability 

2 
3
1 
3 

(B − E [B])2 = 
1, 002, 001 
4, 008, 004 

with probability 
with probability 

E 
� 
(B − E [B])2 

� 
= 1, 002, 001 · 2 

3 
+ 4, 008, 004 · 1 

3 
Var [B] = 2, 004, 002. 

2 
3
1 
3 

The variance of Game A is 2 and the variance of Game B is more than two million! Intu
itively, this means that the payoff in Game A is usually close to the expected value of $1, 
but the payoff in Game B can deviate very far from this expected value. 

High variance is often associated with high risk. For example, in ten rounds of Game A, 
we expect to make $10, but could conceivably lose $10 instead. On the other hand, in ten 
rounds of game B, we also expect to make $10, but could actually lose more than $20,000! 

7.2 Standard Deviation 

Because of its definition in terms of the square of a random variable, the variance of a 
random variable may be very far from a typical deviation from the mean. For example, in 
Game B above, the deviation from the mean is 1001 in one outcome and 2002 in the other. 
But the variance is a whopping 2,004,002. From a dimensional analysis viewpoint, the 
“units” of variance are wrong: if the random variable is in dollars, then the expectation is 
also in dollars, but the variance is in square dollars. For this reason, people often describe 
random variables using standard deviation instead of variance. 

Definition 7.4. The standard deviation, σR, of a random variable, R, is the square root of 
the variance: � � 

σR ::= Var [R] = E [(R − E [R])2]. 
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mean

0 100stdev

Figure 1: The standard deviation of a distribution indicates how wide the “main part” of 
it is. 

So the standard deviation is the square root of the mean of the square of the deviation, 
or the “root mean square” for short. It has the same units—dollars in our example— 
as the original random variable and as the mean. Intuitively, it measures the “expected 
(average) deviation from the mean,” since we can think of the square root on the outside 
as canceling the square on the inside. 
Example 7.5. The standard deviation of the payoff in Game B is: 

σB = Var [B] = 2, 004, 002 ≈ 1416. 

The random variable B actually deviates from the mean by either positive 1001 or neg
ative 2002; therefore, the standard deviation of 1416 describes this situation reasonably 
well. 

Intuitively, the standard deviation measures the “width” of the “main part” of the distri
bution graph, as illustrated in Figure 1. 

There is a useful, simple reformulation of Chebyshev’s Theorem in terms of standard 
deviation. 

Corollary 7.6. Let R be a random variable, and let c be a positive real number. 

1 
. 

2 
Pr {|R − E [R]| ≥ cσR} ≤ 

c

Here we see explicitly how the “likely” values of R are clustered in an O(σR)sized re
gion around E [R], confirming that the standard deviation measures how spread out the 
distribution of R is around its mean. 

Proof. Substituting x = cσR in Chebyshev’s Theorem gives: 

Var [R] σ2 1R = = . 
2 

Pr {|R − E [R]| ≥ cσR} ≤ 
(cσR)2 (cσR)2 c
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7.3 The IQ Example 

Suppose that, in addition to the national average IQ being 100, we also know the standard 
deviation of IQ’s is 10. How rare is an IQ of 200 or more? 

Let the random variable, R, be the IQ of a random person. So we are supposing that 
E [R] = 100, σR = 10, and R is nonnegative. We want to compute Pr {R ≥ 200}. 

We have already seen that Markov’s Theorem 6.1 gives a coarse bound, namely, 

1
Pr {R ≥ 200} ≤ . 

2 

Now we apply Chebyshev’s Theorem to the same problem: 

102 1
Pr {R ≥ 200} = Pr {|R − 100 ≥ 100} ≤ 

Var [R]
= = .|

1002 1002 100 

The purpose of the first step is to express the desired probability in the form required 
by Chebyshev’s Theorem; the equality holds because R is nonnegative. Chebyshev’s 
Theorem then yields the inequality. 

So Chebyshev’s Theorem implies that at most one person in a hundred has an IQ of 200 
or more. We have gotten a much tighter bound using the additional information, namely 
the variance of R, than we could get knowing only the expectation. 

8 Properties of Variance 

8.1 Why Variance? 

The definition of variance of R as E [(R − E [R])2] may seem rather arbitrary. The variance 
is the average of the square of the deviation from the mean. For this reason, variance is 
sometimes called the “mean squared deviation.” But why bother squaring? Why not 
simply compute the average deviation from the mean? That is, why not define variance 
to be E [R − E [R]]? 

The problem with this definition is that the positive and negative deviations from the 
mean exactly cancel. By linearity of expectation, we have: 

E [R − E [R]] = E [R]− E [E [R]] . 

Since E [R] is a constant, its expected value is itself. Therefore 

E [R − E [R]] = E [R]− E [R] = 0. 

By this definition, every random variable has zero variance. That is not useful! Because 
of the square in the conventional definition, both positive and negative deviations from 
the mean increase the variance; positive and negative deviations do not cancel. 
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Of course, we could also prevent positive and negative deviations from canceling by tak
ing an absolute value. That is, we could define variance to be E [ R − E [R] ]. There is | |
no logical reason not to use this definition. However, the conventional version of vari
ance has some valuable mathematical properties which the absolute value version does 
not. We describe these properties in the following sections and use them to determine the 
variance of some important probability distributions. 

8.2 An Alternative Definition of Variance 

There is an equivalent way to define the variance of a random variable that is less intu
itive, but is often easier to use in calculations and proofs: 

Theorem 8.1. 
Var [R] = E R2 − E2 [R] , 

for any random variable, R. 

Here we use the notation E2 [R] as shorthand for (E [R])2 . 

Remember that E [R2] is generally not equal to E2 [R]. We know the expected value of 
a product is the product of the expected values for independent variables, but not in 
general. And R is not independent of itself unless it is constant. 

Proof. Let µ = E [R]. Then 

Var [R] = E (R − E [R])2 (Def. 7.2 of variance) 

= E (R − µ)2 (def. of µ) 

= E R2 − 2µR + µ 2 

2 = E R2 − 2µ E [R] + µ (linearity of expectation) 

R2 − 2µ 2 2 = E + µ (def. of µ) 
2R2 − µ= E 

= E R2 − E2 [R] . (def. of µ) 

For example, if B is a Bernoulli variable where p ::= Pr {B = 1}, then 

2Var [B] = p − p = p(1 − p). (3) 

Proof. Since B only takes values 0 and 1, we have E [B] = p 1 + (1 − p) 0 = p. Since· · 
B = B2, we also have E [B2] = p, so (3) follows immediately from (8.1). 
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8.2.1 Zero Variance 

When does a random variable, R, have zero variance?. . . when the random variable never 
deviates from the mean! 

Lemma 8.2. The variance of a random variable, R, is zero if and only if Pr {R = E [R]} = 1. 

So saying that Var [R] = 0 is almost the same as saying that R is constant. Namely, it takes 
the constant value equal to its expectation on all sample points with nonzero probability. 
(It can take on any finite values on sample points with zero probability without affecting 
the variance.) 

Proof. By the definition of variance, 

Var [R] = 0 iff E (R − E [R])2 = 0. 

The inner expression on the right, (R − E [R])2, is always nonnegative because of the 
square. As a result, E [(R − E [R])2] = 0 if and only if Pr {(R − E [R])2 = 0} is zero, which 
is the same as saying that Pr {(R − E [R])2 = 0} is one. That is, 

Var [R] = 0 iff Pr (R − E [R])2 = 0 = 1. 

But the (R − E [R])2 = 0 and R = E [R] are different descriptions of the same event. 
Therefore, 

Var [R] = 0 iff Pr {R = E [R]} = 1. 

8.2.2 Dealing with Constants 

The following theorem describes how the variance of a random variable changes when it 
is scaled or shifted by a constant. 

Theorem 8.3. Let R be a random variable, and let a and b be constants. Then 

Var [aR + b] = a 2 Var [R] . (4) 

This theorem makes two points. First, adding a constant b to a random variable does 
not affect the variance. Second, multiplying a random variable by a constant changes the 
variance by a square factor. 

Proof. We will transform the left side of (4) into the right side. The first step is to expand 
Var [aR + b] using the alternate definition of variance. 

Var [aR + b] = E (aR + b)2 − E2 [aR + b] . 
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We will work on the first term and then the second term. For the first term, note that by 
linearity of expectation, 

E (aR + b)2 = E a 2R2 + 2abR + b2 = a 2 E R2 + 2ab E [R] + b2 . (5) 

Similarly for the second term: 

2 2E2E2 [aR + b] = (a E [R] + b) = a [R] + 2ab E [R] + b2 . (6) 

Finally, we subtract the expanded second term from the first. 

Var [aR + b] = E (aR + b)2 − E2 [aR + b] (Theorem 8.1) 

= a 2 E R2 + 2ab E [R] + b2− 

(a 2E2 [R] + 2ab E [R] + b2) (by (5) and (6)) 

= a 2 E R2 − a 2E2 [R] 
2= a (E R2 − E2 [R]) 

= a 2 Var [R] (Theorem 8.1) 

A similar rule holds for the standard deviation when a random variable is adjusted by a 
constant. Recall that standard deviation is the square root of variance. Therefore, adding 
a constant b to a random variable does not change the standard deviation. Multiplying a 
random variable by a constant a multiplies the standard deviation by a. So we have 

Corollary 8.4. The standard deviation of aR + b equals a times the standard deviation of R. 

8.3 Variance of a Sum 

Earlier, we claimed that for independent random variables, the variance of a sum is the 
sum of the variances. 

An independence condition is necessary. If we ignored independence, then we would 
conclude that Var [R + R] = Var [R] + Var [R]. However, by Theorem 8.3, the left side is 
equal to 4 Var [R], whereas the right side is 2 Var [R]. This implies that Var [R] = 0, which, 
by Lemma 8.2, essentially only holds if R is constant. 

However, mutual independence is not necessary: pairwise independence will do. This is 
useful to know because there are some important situations involving variables that are 
pairwise independent but not mutually independent. Matching birthdays is an example 
of this kind, as we shall see below. 

Theorem 8.5. [Pairwise Independent Additivity of Variance] If R1, R2, . . . , Rn are pairwise in
dependent random variables, then 

Var [ + Rn] = Var [R1] + Var [R2] + · · ·+ Var [Rn] .R1 + R2 + · · ·
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Proof. By linearity of expectation, we have �2 
� � ��� n n n

E Ri = E RiRj 

i=1 i=1 j=1


n n


= E [RiRj] (linearity) 
i=1 j=1


n


= E [Ri] E [Rj] + E Ri 
2 . (pairwise independence) (7) 

� i=11≤i=j≤n 

In (7), we use the fact that the expectation of the product of two independent variables is 
the product of their expectations. 

Also, � � � � 
n

��2n

E2 Ri = E Ri 

i=1 i=1
� n
� �2 

= E [Ri] (linearity) 
i=1


n n


= E [Ri] E [Rj] 
i=1 j=1 

n

= E [Ri] E [Rj] + E2 [Ri] . (8) 
� i=11≤i=j≤n 

So, �� �2 
� � ��� n

�� n n

Var Ri = E Ri − E2 Ri (Theorem 8.1) 
i=1 i=1 i=1


n


= E [Ri] E [Rj] + E Ri 
2 − 

i=11≤i=� j≤n � 
n

E [Ri] E [Rj] + E2 [Ri] (by (7) and (8)) 
� i=1 

n n

1≤i=j≤n 

= E Ri 
2 − E2 [Ri] 

i=1 i=1

n


= (E R2 − E2 [Ri]) (reordering the sums) i

i=1

n


= Var [Ri] . (Theorem 8.1) 
i=1 
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Now we have a simple way of computing the expectation of a variable Hn,p which has a 
nbinomial distribution with parameters n and p. We know that H
 Ik where the n,p = k=1 

Ik are mutually independent 01valued variables with Pr {Ik = 1} = p. The variance of 
each Ik is p(1 − p) by (3), so by linearity of variance, we have 

Lemma (Variance of the Binomial Distribution). 

Var [Hn,p] = n Var [Ik] = np(1 − p). (9) 

9 Estimation by Random Sampling 

9.1 Estimating Voting Preferences using Chebyshev’s Theorem 

In Notes 13, we used bounds on the binomial distribution to determine confidence levels 
for a poll of voter preferences of Clinton vs. Giulliani. Now that we know the variance of 
the binomial distribution, we can use Chebyshev’s Theorem as an alternative approach 
to calculate poll size. 

The setup is the same as in Notes 13: we will poll n randomly chosen voters and let Sn 

be the total number in our sample who preferred Clinton. We use Sn/n as our estimate 
of the actual fraction, p, of all voters who prefer Clinton. We want to choose n so that our 
estimate will be within 0.04 of p at least 95% of the time. 

Now Sn is binomially distributed, so from (9) we have 

1
Var [Sn] = n(p(1 − p)) ≤ n . 

4 

The bound of 1/4 follows from the easily verified fact that p(1 − p) is maximized when 
p = 1 − p, that is, when p = 1/2. 

Next, we bound the variance of Sn/n: 

Var 
Sn 

= 
1 

n n 

�2 

Var [Sn] (by (4)) �2
1 1 

n (by (9.1))≤ 
n 4 

1 
(10)= . 

4n 

Now from Chebyshev and (10) we have: 

Sn 

n 
− p


Var [Sn/n] 1 156.25
Pr (11)≥ 0.04 ≤ = = . 

(0.04)2 4n(0.04)2 n 
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To make our our estimate with with 95% confidence, we want the righthand side of (11) 
to be at most 1/20. So we choose n so that 

156.25 1 
, 

n 
≤ 

20 

that is, 
n ≥ 3, 125. 

You may remember that in Notes 13 we calculated that it was actually sufficient to poll 
only 664 voters —many fewer than the 3,125 voters we derived using Chebyshev’s The
orem. So the bound from Chebyshev’s Theorem is not nearly as good as the bound we 
got earlier. This should not be surprising. In applying the Chebyshev Theorem, we used 
only a bound on the variance of Sn. In Notes 13, on the other hand, we used the fact that 
the random variable Sn was binomial (with known parameter, n, and unknown parame
ter, p). It makes sense that more detailed information about a distribution leads to better 
bounds. But even though the bound was not as good, this example nicely illustrates an 
approach to estimation using Chebyshev’s Theorem that is more widely applicable than 
binomial estimations. 

9.2 Birthdays again 

There are important cases where the relevant distributions are not binomial because the 
mutual independence properties of the voter preference example do not hold. In these 
cases, estimation methods based on the Chebyshev bound may be the best approach. 
Birthday Matching is an example. 

We’ve already seen that in a class of one hundred or more, there is a very high probability 
that some pair of students have birthdays on the same day of the month. We can also 
easily calculate the expected number of pairs of students with matching birthdays. But 
is it likely the number of matching pairs in a typical class will actually be close to the 
expected number? We can take the same approach to answering this question as we did 
in estimating voter preferences. 

But notice that having matching birthdays for different pairs of students are not mutually 
independent events. For example, knowing that Alice and Bob have matching birthdays, 
and also that Ted and Alice have matching birthdays obviously implies that Bob and Ted 
have matching birthdays. On the other hand, knowing that Alice and Bob have match
ing birthdays tells us nothing about whether Alice and Carol have matching birthdays, 
namely, these two events really are independent. So even though the events that vari
ous pairs of students have matching birthdays are not mutually independent, indeed not 
even threeway independent, they are pairwise independent. 

This allows us to apply the same reasoning to Birthday Matching as we did for voter 
preference. Namely, let B1, B2, . . . , Bn be the birthdays of n independently chosen people, 
and let Ei,j be the indicator variable for the event that the ith and jth people chosen have 



� 

� � � � 

� 

Course Notes, Week 14: Missed Expectations? 23 

the same birthdays, that is, the event [Bi = Bj]. For simplicity, we’ll assume that for i =� j, 
the probability2 that Bi = Bj is 1/365. So the Bi’s are mutually independent variables, 
and hence the Ei,j ’s are pairwise independent variables, which is all we will need. 

Let Mn be the number of matching pairs of birthdays among the n choices, that is, 

Mn ::= Ei,j . (12) 
1≤i<j≤n 

So by linearity of expectation 

� � n 1
E [Mn] = E Ei,j = E [Ei,j ] = . 

2 
· 
365 

1≤i<j≤n 1≤i<j≤n 

Also, by Theorem 8.5, the variances of pairwise independent variables are additive, so � � � � � �� � n 1 1
Var [Mn] = Var Ei,j = Var [Ei,j ] = 1 − . 

2 
· 
365 365 

1≤i<j≤n 1≤i<j≤n 

Now for a class of 100 students, we have E [M100] ≈ 14 and Var [M100] < 14(1−1/365) < 14. 
So by Chebyshev’s Theorem 

14
Pr {|M100 − 14 . 

2
| ≥ x} <

x

Letting x = 6, we conclude that there is a better than 50% chance that in a class of 100 
students, the number of pairs of students with the same birthday will be between 8 and 
20. 

10 Pairwise Independent Sampling 

The reasoning we used above to analyze voter polling and matching birthdays is very 
similar. We summarize it in slightly more general form with a basic result we call the 
Pairwise Independent Sampling Theorem. In particular, we do not need to restrict our
selves to sums of zeroone valued variables, or to variables with the same distribution. 
For simplicity, we state the Theorem for pairwise independent variables with possibly 
different distributions but with the same mean and variance. 

Theorem (Pairwise Independent Sampling). Let G1, . . . , Gn be pairwise independent vari
ables with the same mean, µ, and deviation, σ . Define 

n

Sn ::= Gi. (13) 
i=1 

2In the U.S., Fall birthdays are more common than Winter birthdays, so Pr {Bi = Bj} is actually a bit 
larger than 1/365. 
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Then �


Pr 
Sn 1
 σ
�2 

n 
− µ .≥ x ≤ 

n x 

Proof. We observe first that the expectation of Sn/n is µ: 

n Gii=1SnE = E (def. of Sn) 
n n 

n 

= i=1 E [Gi] (linearity of expectation) 
n 

n 
i=1 µ 

= 
n 

nµ 
= = µ. 

n 

The second important property of Sn/n is that its variance is the variance of Gi divided 
by n: �2 

Var 
Sn 

= 
1 

n n 
Var [Sn] (by (4)) 

n�1 
Var Gi (def. of Sn)= 

2n
i=1 

n

= 
2n

i=1 

1 
Var [Gi] (pairwise independent additivity) 

1 σ2 

= nσ2 = . (14) 
n2 

· 
n 

This is enough to apply Chebyshev’s Bound and conclude: 

Sn 

n 
− µ


Var [Sn/n]
Pr (Chebyshev’s bound) 

(by (14)) 

≥ x ≤ . 
2x

σ2/n 
=


1

x� 

2 

σ
�2 

= . 
n x 

The Pairwise Independent Sampling Theorem provides a precise general statement about 
how the average of independent samples of a random variable approaches the mean. In 
particular, it shows that by choosing a large enough sample size, n, we can get arbitrarily 
accurate estimates of the mean with confidence arbitrarily close to 100%. 
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