In-Class Problems Week 9, Mon.

Problem 1. Prove that asymptotic equality (\sim) is an equivalence relation.

Problem 2. Recall that for functions f, g on the natural numbers, $\mathbb{N}, f=O(g)$ iff

$$
\begin{equation*}
\exists c \in \mathbb{N} \exists n_{0} \in \mathbb{N} \forall n \geq n_{0} \quad c \cdot g(n) \geq|f(n)| . \tag{1}
\end{equation*}
$$

For each pair of functions below, determine whether $f=O(g)$ and whether $g=O(f)$. In cases where one function is O() of the other, indicate the smallest natural number, c, and for that smallest c, the smallest corresponding natural number n_{0} ensuring that condition (1) applies.
(a) $f(n)=n^{2}, g(n)=3 n$.

$f=O(g)$	YES	NO	If YES, $c=\quad, \quad n_{0}=\square$
$g=O(f)$	YES	NO	If YES, $c=\square \quad, n_{0}=\square$

(b) $f(n)=(3 n-7) /(n+4), g(n)=4$

$$
\begin{array}{llll}
f=O(g) & \text { YES } & \text { NO } & \text { If YES, } c=\quad, \quad n_{0}= \\
g=O(f) & \text { YES } & \text { NO } & \text { If YES, } c=\square
\end{array}
$$

(c) $f(n)=1+(n \sin (n \pi / 2))^{2}, g(n)=3 n$
$f=O(g)$
YES
NO
If yes, $c=$ \qquad $n_{0}=$ \qquad
$g=O(f)$
YES
NO
If yes, $c=$ \qquad $n_{0}=$ \qquad

Problem 3. Indicate which of the following holds for each pair of functions $(f(n), g(n))$ in the table below. Assume $k \geq 1, \epsilon>0$, and $c>1$ are constants. Be prepared to justify your answers.

$f(n)$	$g(n)$	$f=O(g)$	$f=o(g)$	$g=O(f)$	$g=o(f)$	$f=\Theta(g)$	$f \sim g$
2^{n}	$2^{n / 2}$						
\sqrt{n}	$n^{\sin n \pi / 2}$						
$\log (n!)$	$\log \left(n^{n}\right)$						
n^{k}	c^{n}						
$\log ^{k} n$	n^{ϵ}						

Problem 4. It is a standard fallacy to think that given n quantities each of which is $O(1)$, their sum would have to be $O(n)$.
Namely, let f_{1}, f_{2}, \ldots be a sequence of functions from \mathbb{N} to \mathbb{N}, and let

$$
S(n)::=\sum_{i=1}^{n} f_{i}(n) .
$$

Then given that $f_{i}=O(1)$ for every f_{i} in the sequence, we can try to argue as follows:

$$
S(n)=\sum_{i=1}^{n} f_{i}(n)=\sum_{i=1}^{n} O(1)=n \cdot O(1)=O(n)
$$

This informal argument may seem plausible, but is fundamentally flawed because it treats $\mathrm{O}(1)$ as some kind numerical quantity. In fact, we ask you to show that there is no way to determine how fast the sum, $S(n)$, may grow.
Namely, let g be any function on \mathbb{N}. Explain how to define a sequence of functions f_{1}, f_{2}, \ldots such that each $f_{i}=O(1)$, but S is not $O(g)$. Hint: Let $f_{i}(n)::=1+i g(i)$.

Asymptotic Notations

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, we say f is asymptotically equal to g, in symbols,

$$
f(x) \sim g(x)
$$

iff

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=1
$$

For functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, we say f is asymptotically smaller than g, in symbols,

$$
f(x)=o(g(x)),
$$

iff

$$
\lim _{x \rightarrow \infty} f(x) / g(x)=0
$$

Given functions $f, g: \mathbb{R} \mapsto \mathbb{R}$, with g nonnegative, we say that ${ }^{1}$

$$
f=O(g)
$$

iff

$$
\limsup _{x \rightarrow \infty}|f(x)| / g(x)<\infty .
$$

An alternative, equivalent, definition is

$$
f=O(g)
$$

iff there exists a constant $c \geq 0$ and an x_{0} such that for all $x \geq x_{0},|f(x)| \leq c g(x)$. Finally, we say

$$
f=\Theta(g) \quad \text { iff } \quad f=O(g) \wedge g=O(f)
$$

[^0]$$
\limsup _{x \rightarrow \infty} h(x)::=\lim _{x \rightarrow \infty} \operatorname{lub}_{y \geq x} h(y)
$$

[^0]: 1

