Predicates

Predicate Logic Quantifiers \forall, \exists

Quantifiers

$\forall X$ For ALL x

$\exists y \quad$ There EXISTS some y

Team Problems

Problems
$1 \& 2$

Math vs. English

Poet: "There is season for every
\quad purpose under heaven"

$\exists s \in$ season | $\forall p \in$ purpose |
| :--- |
| s is the season for p | No!

Math vs. English

Poet: "There is season for every purpose under heaven"
$\forall p \in$ purpose $\exists s \in$ season s is the season for p
(Poetic license again.)

Propositional Validity

$$
(A \rightarrow B) \vee(B \rightarrow A)
$$

True no matter what the truth values of A and B are

Predicate Calculus Validity

 $\forall z[Q(z) \wedge P(z)]$$$
\rightarrow[\forall x Q(x) \wedge \forall y P(y)]
$$

True no matter what

- the Domain is,
- the predicates are.

Predicate Inference Rule

$$
\frac{Q \rightarrow P(c)}{Q \rightarrow \forall x \cdot P(x)}
$$

(providing c does not occur in Q)
Universal Generalization (UG)

Validities

$\forall z[Q(z) \wedge P(z)] \rightarrow[\forall x Q(x) \wedge \forall y P(y)]$
Proof strategy: We assume

$$
\forall z[Q(\mathrm{z}) \wedge P(\mathrm{z})]
$$

to prove

$$
\forall x Q(x) \wedge \forall y P(y) .
$$

Team Problems

Problems $3 \& 4$

