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Predicate Logic
Quantifiers ∀, ∃ 
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Predicates 

Predicates are 
Propositions with variables 

N 
“is defined to be” 

x + 2 = y 
Example: 

P(x,y) ::= 
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Predicates 

x = 1 and y = 3: P(1,3) is true 

x = 1 and y = 4: P(1,4) is false 
¬P(1,4) is true 

[ ]::( ,  )  2P x y  x  y= + =  
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Quantifiers 

For ALL x 

There EXISTS some y 

∀x 
∃y 
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Quantifiers 

x, y range over Domain of Discourse 

x y x y∀ ∃  <  

+] 

Domain Truth value 

positive integers Z+ 
Trueintegers Z 
True 

negative integers Z- False 
negative reals R

\\

True 
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Team Problems 

Problems 
1 & 2 

1




© . 

Poet: 

“All that glitters is not gold.”N 

G � 

No!: gold glitters like gold 
© . 

Poet: 

“All that glitters is not gold.”N 

G � 

∧ 

(Poetic license) 
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Math vs. English 

Au 

���
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Math vs. English 

Au 

��� necessarily 

© . 

Poet
purpose under heaven” 

No! 

© . 

Poet
purpose under heaven” 

(Poetic license again.) 
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Math vs. English 

: “There is season for every 
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Math vs. English 

: “There is season for every 

© . 

True no matter what the 
truth values of A and B are 

( ) ( )A B B A→ ∨ → 

© . 

no matter what 
• 
• are. 

∀z [Q(z) ∧ P(z)] 
→ [∀xQ(x) ∧ ∀yP(y)] 
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Propositional Validity 

lec 2W.12 September 14, 2005 Copyright Albert R. Meyer, 2005

Predicate Calculus Validity 

True 
the Domain is, 
the predicates 

2
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Not Valid 

Proof: Give , where
∀z [Q(z) ∨ P(

but ∀xQ(x) ∨ ∀yP(y) is 
e, 

Q(z) ::= [z = e], 
P(z) ::= [z = π]. 

∀z [Q(z)∨P(z)] → [∀xQ(x) ∨ ∀yP(y)] 

© . 

Validities 

Proof strategy: We assume 
∀z [Q(z) ∧ P(z)] 

to prove
∀xQ(x) ∧∀yP(y). 

∀z [Q(z)∧P(z)] → [∀xQ(x) ∧ ∀yP(y)] 
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countermodel
z)] is true, 

false. 
Namely, let domain ::= { π}, 
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( )  
. (  )  

Q 
Q 

→ 

→∀  
(providing c does not occur in Q) 

Universal Generalization (UG) 

© . 

Proof: ∀z [Q(z)∧P(z)]. 
So Q(z)∧P(z) holds for all z 

c 
Q(c)∧P(c) Q(c) by itself holds. 
But c 

∀xQ(x). 
We conclude ∀yP(y)

∀xQ(x) ∧ ∀yP(y) 

Validities 
∀z [Q(z)∧P(z)] → [∀xQ(x) ∧ ∀yP(y)] 

(by UG) 
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Predicate Inference Rule 

P  c  
x  P  x  
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Assume 
in the domain. 

Now let be some domain element. So 
holds, and therefore 

could have been any element of the domain. 
So we conclude 

similarly. Therefore, 
QED. 

© . 

∀x [P(x)∨A] ↔ [∀x P(x)] ∨ A 

[¬∀x P(x)] ↔ [∃x ¬ P(x)] 

More Validities 

© . 

Team Problems 

Problems 
3 & 4 
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