

Closed form for n!
Factorial defines a product:

$$n! ::= 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n = \prod_{i=1}^{n} i$$

Turn product into a sum taking logs:
 $\ln(n!) = \ln(1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n)$
 $= \ln 1 + \ln 2 + \cdots + \ln(n-1) + \ln(n)$
 $= \sum_{i=1}^{n} \ln(i)$
prior 0 About Matrix Log 20 (2012)

Integral Method
Bounds on
$$\ln(n!)$$

$$\int_{1}^{n} \ln(x) \, dx \leq \sum_{i=1}^{n} \ln(i) \leq \int_{0}^{n} \ln(x+1) \, dx$$

$$n \ln(n/e) + 1 \leq \sum \ln(i) \leq (n+1) \ln((n+1)/e) + 1$$
So guess:
$$\sum_{i=1}^{n} \ln(i) \approx (n + \frac{1}{2}) \ln\left(\frac{n}{e}\right)$$
Cupryll 0. Allow the Mark Result Result Result (205). Constant of the set of th

Integral Method

$$\sum_{i=1}^{n} \ln(i) \approx (n + \frac{1}{2}) \ln\left(\frac{n}{e}\right)$$
exponentiating:

$$n! \approx \sqrt{n/e} \left(\frac{n}{e}\right)^{n}$$
Expose 1.000 (2010)

Stirling's Formula
A precise approximation:
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Stirling's Formula
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Asymptotic Equivalence
Example:
$$(n^2 + n) \sim n^2$$

because
 $\lim_{n \to \infty} \frac{n^2 + n}{n^2} = \lim_{n \to \infty} \left[\frac{n^2}{n^2} + \frac{n}{n^2}\right]$
 $= \lim_{n \to \infty} \left[1 + \frac{1}{n}\right]$
 $= 1 + \lim_{n \to \infty} \frac{1}{n}$
 $= 1 + 0 = 1$

Little Oh
Asymptotically smaller:
Def.
$$f(n) = o(g(n))$$

iff
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$
Little Oh
 $\int g(n)$

Little Oh

$$n^2 = o(n^3)$$

because
 $\lim_{n \to \infty} \frac{n^2}{n^3} =$
 $\lim_{n \to \infty} \frac{1}{n} = 0$

Big Oh
Asymptotic Order
of Growth:

$$f(n) = O(g(n))$$

 $\lim_{n \to \infty} \sup_{n \to \infty} \left(\frac{f(n)}{g(n)}\right) < \infty$
a technicality -- ignore now

The Oh's
If
$$f = o(g)$$
 or $f \sim g$ then $f = O(g)$
 $\lim = 0$ $\lim = 1$ $\lim < \infty$
converse is NOT true!

The Oh's
If
$$f = o(g)$$
, then $g \neq O(f)$
 $\lim \frac{f}{g} = 0$ $\lim \frac{g}{f} = \infty$

Big Oh
Equivalent definition:
$$f(n) = O(g(n))$$

 $\exists c, n_0 \ge 0 \ \forall n \ge n_0 \ |f(n)| \le c \cdot g(n)$

Little Oh
Lemma:
$$\ln x = o(x^{\delta})$$
 for $\delta > 0$.
Proof: $\frac{1}{y} \le y$ for $y \ge 1$.
 $\int_{1}^{z} \frac{1}{y} dy \le \int_{1}^{z} y dy$
 $\ln z \le \frac{z^{2} - 1}{2}$

Little Oh
Lemma:
$$\ln x = o(x^{\delta})$$
 for $\delta > 0$.
Proof: $\ln z \le \frac{z^2}{2}$ Let $z ::= \sqrt{x^{\varepsilon}}$
 $\frac{\varepsilon \ln x}{2} \le \frac{x^{\varepsilon}}{2}$
 $\ln x \le \frac{x^{\varepsilon}}{\varepsilon} = o(x^{\delta})$ for $\delta > \varepsilon$.

Theta
Same Order of Growth:

$$f(n) = \Theta(g(n))$$

 $f(n) = O(g(n))$ and $g(n) = O(f(n))$
Not the same as "~"!

Big Oh Mistakes

$$f = O(g)$$
 defines a *relation* "= $O(\cdot)$ "
Don't write $O(g) = f$.
Otherwise: $x = O(x)$, so $O(x) = x$.
But $2x = O(x)$, so
 $2x = O(x) = x$,
therefore $2x = x$.
Nonsense!

Big Oh Mistakes
Lower bound blunder:
"
$$f$$
 is at least $O(n^2)$ "

Big Oh Mistakes
False Lemma:
$$\sum_{i=1}^{n} i = O(n)$$
False Proof:
 $0 = O(1), 1 = O(1), 2 = O(1), ...$
So each $i = O(1)$. So

$$\sum_{i=1}^{n} i = O(1) + O(1) + ... + O(1)$$
 $= n \cdot O(1) = O(n)$.

