Stirling's formula, Asymptotics

Integral Method

Integral Method to bound $\sum_{i=1}^{n} \ln i$

Integral Method

Reminder:

$$
\int \ln x d x=x \ln \left(\frac{x}{e}\right)
$$

Closed form for \boldsymbol{n} !

Factorial defines a product:

$$
n!::=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n=\prod_{i=1}^{n} i
$$

Turn product into a sum taking logs:

$$
\begin{aligned}
\ln (n!) & =\ln (1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n) \\
& =\ln 1+\ln 2+\cdots+\ln (n-1)+\ln (n) \\
& =\sum_{i=1}^{n} \ln (i)
\end{aligned}
$$

Integral Method

Bounds on $\ln (n!)$
$\int_{1}^{n} \ln (x) d x \leq \sum_{i=1}^{n} \ln (i) \leq \int_{0}^{n} \ln (x+1) d x$

Integral Method

Bounds on $\ln (n!)$
$\int_{1}^{n} \ln (x) d x \leq \sum_{i=1}^{n} \ln (i) \leq \int_{0}^{n} \ln (x+1) d x$
$n \ln (n / e)+1 \leq \Sigma \ln (i) \leq(n+1) \ln ((n+1) / e)+1$
So guess: $\sum_{i=1}^{n} \ln (i) \approx\left(n+\frac{1}{2}\right) \ln \left(\frac{n}{e}\right)$

Integral Method

$$
\sum_{i=1}^{n} \ln (i) \approx\left(n+\frac{1}{2}\right) \ln \left(\frac{n}{e}\right)
$$

exponentiating:

$$
n!\approx \sqrt{n / e}\left(\frac{n}{e}\right)^{n}
$$

Asymptotic Equivalence

Def. $\quad f(n) \sim g(n)$
iff

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Asymptotic Equivalence

Example: $\left(n^{2}+n\right) \sim n^{2}$ because
$\lim _{n \rightarrow \infty} \frac{n^{2}+n}{n^{2}}=\lim \left[\frac{n^{2}}{n^{2}}+\frac{n}{n^{2}}\right]$
$=\lim \left[1+\frac{1}{n}\right]$
$=1+\lim \frac{1}{n}$
$=1+0=1$

Stirling's Formula

A precise approximation:

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Stirling's Formula

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

Little Oh

Asymptotically smaller:
Def. $\quad f(n)=o(g(n))$
iff

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

Little Oh

$n^{2}=o\left(n^{3}\right)$
because
$\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{3}}=$
$\lim _{n \rightarrow \infty} \frac{1}{n}=0$

Big Oh

Asymptotic Order

of Growth:

$$
{ }^{\prime \prime} f(n)=O(g(n))
$$

$\underset{\substack{\operatorname{limsuxp} \\ n \rightarrow \infty}}{ }\left(\frac{f(n)}{g(n)}\right)<\infty$
a technicality -- ignore now

Big Oh
$3 n^{2}=O\left(n^{2}\right)$
$\lim _{n \rightarrow \infty} \frac{3 n^{2}}{n^{2}}$
$=3<\infty$

The Oh's

If $f=\mathrm{o}(g)$ or $f \sim g$ then $f=\mathrm{O}(g)$ $\lim =0 \quad \lim =1 \quad \lim <\infty$ converse is NOT true!

The Oh's

If $f=\mathrm{o}(g)$, then $g \neq \mathrm{O}(f)$
$\lim \frac{f}{g}=0 \quad \lim \frac{g}{f}=\infty$

Big Oh

Equivalent definition:

$$
f(n)=\mathrm{O}(g(n))
$$

$\exists c, n_{0} \geq 0 \forall n \geq n_{0}|f(n)| \leq c \cdot g(n)$

Little Oh

Lemma: $x^{a}=\mathrm{o}\left(x^{b}\right)$ for $a<b$
Proof: $\frac{x^{a}}{x^{b}}=\frac{1}{x^{b-a}} \quad$ and $b-a>0$.
So as $x \rightarrow \infty$,
$x^{b-a} \rightarrow \infty$ and $\frac{1}{x^{b-a}} \rightarrow 0$.

Little Oh

Lemma: $\ln x=\mathrm{o}\left(x^{\delta}\right)$ for $\delta>0$.
Proof: $\ln z \leq \frac{z^{2}}{2} \quad$ Let $Z::=\sqrt{x^{\varepsilon}}$

$$
\frac{\varepsilon \ln x}{2} \leq \frac{x^{\varepsilon}}{2}
$$

$\ln x \leq \frac{x^{\varepsilon}}{\varepsilon}=\mathrm{o}\left(x^{\delta}\right)$ for $\delta>\varepsilon$.

Little Oh

Lemma: $\ln x=\mathrm{o}\left(x^{\delta}\right)$ for $\delta>0$.
Proof: $\quad \frac{1}{y} \leq y \quad$ for $y \geq 1$.

$$
\begin{aligned}
\int_{1}^{z} \frac{1}{y} d y & \leq \int_{1}^{z} y d y \\
\ln z & \leq \frac{z^{2}-1}{2}
\end{aligned}
$$

Theta

Same Order of Growth:

$$
f(n)=\Theta(g(n))
$$

$$
f(n)=\mathrm{O}(g(n)) \text { and } g(n)=\mathrm{O}(f(n))
$$

Not the same as " ~"!

Big Oh Mistakes

$f=\mathrm{O}(g)$ defines a relation " $=\mathrm{O}(\cdot) "$
Don't write $\mathrm{O}(\mathrm{g})=f$.
Otherwise: $x=\mathrm{O}(x)$, so $\mathrm{O}(x)=x$.
But $2 x=\mathrm{O}(x)$, so
$2 x=\mathrm{O}(x)=x$,
therefore $\quad 2 x=x$.
Nonsense!

Big Oh Mistakes

Lower bound blunder:
" f is at least $O\left(n^{2}\right)$ "

Big Oh Mistakes
False Lemma: $\quad \sum_{i=1}^{n} i=O(n)$
Of course really $\quad \sum_{i=1}^{n} i=\theta\left(n^{2}\right)$

Team Problems

Problems $3 \& 4$

Big Oh Mistakes

False Lemma: $\quad \sum_{i=1}^{n} i=O(n)$
False Proof:

$$
0=\mathrm{O}(1), 1=\mathrm{O}(1), 2=\mathrm{O}(1), \ldots
$$

So each $i=O(1)$. So
$\sum_{i=1}^{n} i=$
$=n \cdot \mathrm{O}(1)+\mathrm{O}(1)+\cdots+\mathrm{O}(1)$
$=\mathrm{O}(n)$.

