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by 

Induction
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An Example of Induction
Suppose we have a property (say color) of
the natural numbers:

0, 1, 2, 3, 4, 5, …
Showing that zero is red, and that

the successor of any red number is red,

proves that all numbers are red!
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The Induction Rule

0 and (from n to n+1)
proves 0, 1, 2, 3,….

R(0), ∀n∈N [R(n)→R(n+1)]
∀m∈N R(m)_____
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Like Dominos…
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Example Induction Proof

Let’s prove:
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Proof by Induction
Statements in green form a template for
inductive proofs:
Proof: (by induction on n)

The induction hypothesis:
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Example Induction Proof
Base Case (n = 0):
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Wait: divide by zero bug! 
This is only true for r ≠ 1
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An Example Proof

Revised Induction Hypothesis:
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Revised Theorem:

r ≠ 1∀
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An Example Proof

Induction Step: Assume P(n) for
n ≥ 0 to prove P(n + 1):
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An Example Proof
Have P(n) by assumption:

Adding  r n+1 to both sides:
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An Example Proof
Continued…

Which is just P(n+1)
Therefore theorem is true 
by induction.  QED.
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An Aside: Ellipses
Ellipses (…) mean that the reader is
supposed to infer a pattern.
• Can lead to confusion 
• Summation notation gives more precision, 

for example:
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Class Problem 1

Problems
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The MIT Stata Center

Copyright © 2003, 2004, 2005 Norman Walsh. This work is licensed under a Creative Commons License.
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The Stata Center Plaza
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The Gehry/Gates Plaza
Goal: tile the squares, except one in the 
middle for Bill. 

n2

n2

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Gehry specifies L-shaped tiles covering 
three squares:

For example, for 8 x 8 plaza might tile for Bill 
this way:

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Theorem: For any 2n × 2n plaza, we can 
make Bill and Frank happy.
Proof: (by induction on n)
P(n) ::= can tile 2n × 2n with Bill in middle.

Base case:  (n=0)

(no tiles needed)
Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza

n2

Induction step: assume can tile 2n × 2n,
prove can handle 2n+1 × 2n+1.

12 +n

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Now what?

12 +n

n2

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza

The fix:

Prove that we can always find
a tiling with Bill in the corner.
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The Gehry/Gates Plaza
Note: Once have Bill in corner,

can get Bill in middle:

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Method: 
Rotate the squares as indicated.

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Method: after rotation have:

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Method: Now group the 4 squares together,

and insert a tile.

Done!
Bill in
middle

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Theorem: For any 2n × 2n plaza, we can 
put Bill in the corner.
Proof: (by induction on n)
P(n) ::= can tile 2n × 2n with Bill in corner

Base case:  (n=0)

(no tiles needed)
Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Induction step:
Assume we can get Bill in corner of 2n × 2n.
Prove we can get Bill in corner of  2n+1 × 2n+1.

n2

n2

Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza

Method: Rotate the squares as indicated.
Photo courtesy of Ricardo Stuckert/ABr.



L2-1.29September 21, 2005Copyright © Albert R. Meyer and Ronitt Rubinfeld, 2005. 

The Gehry/Gates Plaza
Method: Rotate the squares as indicated.

after rotation have:
Photo courtesy of Ricardo Stuckert/ABr.
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The Gehry/Gates Plaza
Method: Now group the squares together,

and fill the center with a tile.

Done!

Photo courtesy of Ricardo Stuckert/ABr.
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Ingenious Induction 
Hypotheses

Note 1: To prove
“Bill in middle,”

we proved something 
else: “Bill in corner.”
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Ingenious Induction 
Hypotheses

Note 2: Other times it helps to
choose a stronger hypothesis
than the desired result.
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Inductive (Recursive) 
Procedures

Note 3: The induction proof of
“Bill in corner” implicitly defines
a recursive procedure for
constructing a 2n+1 × 2n+1 corner
tiling from a 2n × 2n corner tiling.
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Problems

Class Problem 2
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A False Proof
Theorem: All horses are the same color. 
Proof: (by induction on n)
Induction hypothesis:
P(n) ::=   any set of n horses have the same color

Base case (n=0):
No horses so vacuously true!

…
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A False Proof

(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

…
n+1
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A False Proof

…
First set of n horses have the same color

Second set of n horses have the same color

(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.
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A False Proof

…
Therefore the set of n+1 have the same color!

(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.



L2-1.39September 21, 2005Copyright © Albert R. Meyer and Ronitt Rubinfeld, 2005. 

A False Proof

What is wrong?
Proof that P(n) →P(n+1)          
is false if n = 1, because the two 
horse groups do not overlap.

First set of n=1 horses

Second set of n=1 horses

n =1
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A False Proof

(But proof works for all n ≠ 1)

Proof that P(n) →P(n+1)          
is false if n = 1, because the two 
horse groups do not overlap.
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