Proofs

by

Induction

Suppose we have a property (say color) of the natural numbers:

$$
0,1,2,3,4,5, \ldots
$$

Showing that zero is red, and that the successor of any red number is red, proves that all numbers are red!

The Induction Rule

0 and (from n to $n+1$)

proves 0, 1, 2, 3,....

$\underline{\mathrm{R}(0), \forall n \in \mathrm{~N} \quad[\mathrm{R}(n) \rightarrow \mathrm{R}(n+1)]}$

$\forall m \in \mathrm{~N} \mathbf{R}(m)$

Like Dominos...

Example Induction Proof

Let's prove:

Proof by Induction

Statements in green form a template for inductive proofs:
Proof: (by induction on n)
The induction hypothesis:
$P(n)::=1+r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}$

Base Case ($n=0$):

Wait: divide by zero bug! This is only true for $r \neq 1$

An Example Proof

Revised Theorem:

Revised Induction Hypothesis:

An Example Proof

Induction Step: Assume $P(n)$ for

$n \geq 0$ to prove $P(n+1)$:

An Example Proof

Have $P(n)$ by assumption:

$$
1+r+r^{2}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

Adding r^{n+1} to both sides:
$\begin{aligned} 1+\cdots+r^{n}+r^{n+1} & =\frac{r^{n+1}-1}{r-1}+r^{n+1} \\ & =\frac{r^{n+1}-1+r^{n+1}(r-1)}{r-1}\end{aligned}$

An Example Proof

Continued...

$$
\begin{aligned}
1+\cdots+r^{n}+r^{n+1} & =\frac{r^{n+1}-1+r \cdot r^{n+1}+-r^{n+1}}{r-1} \\
& =\frac{r^{(n+1)+1}-1}{r-1}
\end{aligned}
$$

Which is just $P(n+1)$
Therefore theorem is true by induction. QED.

An Aside: Ellipses

Ellipses (...) mean that the reader is supposed to infer a pattern.

- Can lead to confusion
- Summation notation gives more precision, for example:

$$
1+r+r^{2}+\cdots+r^{n}=\sum_{i=0}^{n} r^{i}
$$

Problems

Class Problem 1

The MIT Stata Center

Copyright © 2003, 2004, 2005 Norman Walsh. This work is licensed under a Creative Commons License.

The Stata Center Plaza

The Gehry/Gates Plaza

 Goal: tile the squares, except one in the middle for Bill.Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

Gehry specifies L-shaped tiles covering three squares:

For example, for 8×8 plaza might tile for Bill this way:

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

Theorem: For any $2^{n} \times 2^{n}$ plaza, we can make Bill and Frank happy.
Proof: (by induction on n) $P(n)$::= can tile $2^{n} \times 2^{n}$ with Bill in middle.

Base case: ($n=0$)
(no tiles needed)
Photo courtesy of Ricardo Stuckert/ABr.
 Induction step: assume can tile $2^{n} \times 2^{n}$, prove can handle $2^{n+1} \times 2^{n+1}$.

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

Now what?

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

The fix:
Prove that we can always find a tiling with Bill in the corner.

The Gehry/Gates Plaza

Note: Once have Bill in corner, can get Bill in middle:

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

 Method: Rotate the squares as indicated.Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza Method: after rotation have:

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

 Method: Now group the 4 squares together, and insert a tile.Photo courtesy of Ricardo Stuckert/ABr.

Done! Bill in middle

The Gehry/Gates Plaza

Theorem: For any $2^{n} \times 2^{n}$ plaza, we can put Bill in the corner.
Proof: (by induction on n)
$P(n)::=$ can tile $2^{n} \times 2^{n}$ with Bill in corner
Base case: ($n=0$)
A. (no tiles needed)

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

Induction step:

Assume we can get Bill in corner of $2^{n} \times 2^{n}$. Prove we can get Bill in corner of $2^{n+1} \times 2^{n+1}$.

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

Method: Rotate the squares as indicated.

Photo courtesy of Ricardo Stuckert/ABr.

The Gehry/Gates Plaza

 Method: Rotate the squares as indicated. after rotation have:Photo courtesy of Ricardo Stuckert/ABr.

Method: Now group the squares together, and fill the center with a tile.

Ingenious Induction Hypotheses

Note 1: To prove

 "Bill in middle," we proved something else: "Bill in corner."
Ingenious Induction Hypotheses

Note 2: Other times it helps to choose a stronger hypothesis than the desired result.

Inductive (Recursive) Procedures

Note 3: The induction proof of "Bill in corner" implicitly defines a recursive procedure for
constructing a $2^{n+1} \times 2^{n+1}$ corner tiling from a $2^{n} \times 2^{n}$ corner tiling.

Problems

Class Problem 2

A False Proof

Theorem: All horses are the same color.
Proof: (by induction on n)
Induction hypothesis:
$P(n)::=$ any set of n horses have the same color
Base case ($n=0$):
No horses so vacuously true!

A False Proof

(Inductive case)

Assume any n horses have the same color.
Prove that any $n+1$ horses have the same color.

A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any $n+1$ horses have the same color.

Second set of n horses have the same color

First set of n horses have the same color

A False Proof

(Inductive case)

Assume any n horses have the same color. Prove that any $n+1$ horses have the same color.

Therefore the set of $n+1$ have the same color!

A False Proof

What is wrong? $n=1$

Proof that $P(n) \rightarrow P(n+1)$
is false if $n=1$, because the two
horse groups do not overlap.
Second set of $n=1$ horses

First set of $n=1$ horses

A False Proof

Proof that $P(n) \rightarrow P(n+1)$
is false if $n=1$, because the two
horse groups do not overlap.

(But proof works for all $n \neq 1$)

