Relations

Relation Abstraction

(Binary) Relation:
domain $=\operatorname{set} A$
codomain $=$ set B
graph $=$ subset of $A \times B$
$\operatorname{graph}(R)=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{3}\right),\left(a_{3}, b_{3}\right)\right\}$
$A \times B=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{1}, b_{3}\right)\right.$
$\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{2}, b_{3}\right)$
$\left.\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right),\left(a_{3}, b_{3}\right)\right\}$

Relation Abstraction

Relation on A:
domain $=\operatorname{set} A$
codomain $=\operatorname{set} A$

graph $=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{1}\right),\left(\mathrm{a}_{1}, \mathrm{a}_{3}\right),\left(\mathrm{a}_{3}, \mathrm{a}_{3}\right)\right\}$

Types of Binary Relations on A
Equivalence Relations

- Equivalence (mod 4):
$1 \equiv 5 \quad$ (same remainder/4)
- Propositional equivalence:
$\overline{P \wedge Q} \equiv \bar{P} \vee \bar{Q}$ (same truth table)
-Equivalence
-Partial Orders

Equivalence Relations

- Equivalent code (compilers):

$$
x:=1 ; x:=x+1 \equiv x:=2 ?
$$

(same effect)

- Rubik's cube equivalence

(same reachability group)

Def. of Equivalence on Set A

There is a function, f, on
A such that
$a R b$ iff $f(a)=f(b)$

Equivalence Relations

- Equivalence (mod 4):
$1 \equiv 5 \quad$ (same remainder/4)
$f(x)=x \bmod 4$

Hash Functions

How to map a large address space into a smaller address space?

So no collisions occur?

$$
\overbrace{h(\langle\text { name } 1\rangle)=h(\langle\text { name } 2\rangle)}
$$

Athena assigns user directories based on the first two letters of a username: rab \& raej in r/a/

Partitions

Theorem: An equivalence relation partitions its domain into collections of equivalent elements called
equivalence classes.

Some properties of relations:

Relation R on set A is
Reflexive:
if $a R a$ for all $a \in A$.
Symmetric:
if $a R b \rightarrow b R a$ for all $a, b \in A$.
Transitive:
if $[a R b \wedge b R c] \rightarrow a R c$ for all $a, b, c \in A$.
Equivalence Relation Properties
Equivalence Relation R on set A is
Reflexive: aRa
Symmetric: $a R b \rightarrow b R a$
Transitive: $[a R b \wedge b R c] \rightarrow a R c$

Equivalence Relation Properties
Theorem:
R is an equivalence relation
iff it is
Reflexive, Symmetric,
\& Transitive

Ordering Relations

- \leq on the Integers
- < on the Reals
- \subseteq on Sets (subset)
- \subset on Sets (proper subset)

Partial Orders

The proper subset relation, \subset,
on sets is the canonical example.

Def. of Partial Order on Set A

There is a set-valued
function, g, on A such that
$a R b$ iff $g(a) \subset g(b)$
for $a \neq b$

Divides \& Subset

Let

$$
\begin{gathered}
g(n)::=\text { divisors of } n \\
n \mid m \text { iff } g(n) \subset g(m) \\
\text { for } n \neq m
\end{gathered}
$$

閪 Properties of \subset
$[A \subset B$ and $B \subset C]$ implies $A \subset C$
Transitive
$A \subset B$ implies $\neg(B \subset A)$
for $A \neq B$
Antisymmetric

Axioms for Partial Order
Theorem: R is a partial order iff
Transitive \& Antisymmetric
(Compare to Equivalence:
Reflexive, Transitive, Symmetric.)

Total Order on A

Partial Order, R, such that for all $a \neq b \in A$

Total Orders

$a<b$ or $b<a$
(for numbers $a \neq b$)

Total Orders

$$
\begin{gathered}
a \leq b \text { or } b \leq a \\
\quad(\text { for all } a, b)
\end{gathered}
$$

Team Problems

Problems 3 \& 4

