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Solutions to Problem Set 6


Problem 1. You’ve seen how the RSA encryption scheme works, but why is it hard to 
break? In this problem, you will see that finding secret keys is as hard as finding the 
prime factorizations of integers. Since there is a general consensus in the crypto commu­
nity (enough to persuade many large financial institutions, for example) that factoring 
numbers with a few hundred digits requires astronomical computing resources, we can 
therefore be sure it will take the same kind of overwhelming effort to find RSA secret keys 
of a few hundred digits. This means we can be confident the private RSA keys are not 
somehow revealed by the public keys 1 

For this problem, assume that n = p · q where p, q are both odd primes and that e is the 
public key and d the secret key of the RSA protocol as described in Week 6 Notes. Let 
x ::= e d − 1.· 

(a) Show that φ(n) divides x. 

Solution. ed ≡ 1 (mod φ)(n) by definition of d, so φ(n) divides x by definition of ≡ mod 
φ(n). � 

(b) Conclude that 4 divides x. 

Solution. Since p, q are odd, both p− 1 and q− 1 are even. Thus 4 divides (p− 1)(q− 1) = 
φ(n), so by part (a), 4 also divides x. � 

x(c) Show that if gcd(r, n) = 1, then r ≡ 1 (mod n). 

Solution. By Euler’s Theorem, rφ(n) ≡ 1 (mod n). By part (a), x = kφ(n) for some integer, 
k, so � �kx kφ(n) φ(n)r = r = r ≡ 1k ≡ 1 (mod n). 

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld. 
1This is a very weak kind of “security” property, because it doesn’t even rule out the possibility of deci­

phering RSA encoded messages by some method that did not require knowing the secret key. Nevertheless, 
oveer twenty years experience supports the security of RSA in practice. 
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2A square root of m modulo n is a nonnegative integer s < n such that s ≡ m (mod n). 
Here is a nice fact to know: when n is a product of two odd primes, then every number 
m such that gcd(m,n) = 1 has 4 square roots modulo n. 

In particular, the number 1 has four square roots modulo n. The two trivial ones are 1 and 
n− 1 (which is ≡ −1 (mod n)). The other two are called the nontrivial square roots of 1. 

(d)	 Since you know x, then for any integer, r, you can also compute the remainder, y, of 
2 ≡ rxrx/2 divided by n. So y (mod n). Now if r is relatively prime to n, then y will be a 

square root of 1 modulo n by part (c). 

Show that if y turns out to be a nontrivial root of 1 modulo n, then you can factor n. Hint: 
2From the fact that y − 1 = (y + 1)(y− 1), show that y + 1 must be divisible by exactly one 

of q and p. 

2Solution. Since y is a square root of 1 modulo n, we know that n divides y − 1 = (y + 
1)(y− 1). So p must divide either y + 1 or y− 1, and likewise q must divide either y + 1 or 
y − 1.


But if y is nontrivial, then y + 1 and y − 1 are positive and smaller than n, so if y + 1 is

divisible by p it can’t also be divisible by q, and likewise, if it is divisible by q it can’t also

be divisible by p. So y + 1 must be divisible by exactly one of p and q. So gcd(y + 1, n)

must equal p or q. �


(e) It turns out that at least half the positive integers r < n that are relatively prime to 
n will yield y’s in part (d) that are nontrivial roots of 1. Conclude that if, in addition to n 
and the public key, e, you also knew the secret key d, then you can be sure of being able 
to factor n. 

Solution. Keep choosing r’s at random. Most r’s wil be relatively prime to n and at least 
half of these will yield nontrivial y’s in part (d), so you can be sure to turn up the needed 
nontrivial y in not very many tries. � 

Problem 2. The Massachusetts Turnpike Authority is concerned about the integrity of the 
new Zakim bridge. Their consulting architect has warned that the bridge may collapse if 
more than 1000 cars are on it at the same time. The Authority has also been warned by 
their traffic consultants that the rate of accidents from cars speeding across bridges has 
been increasing. 

Both to lighten traffic and to discourage speeding, the Authority has decided to make 
the bridge one­way and to put tolls at both ends of the bridge (don’t laugh, this is Mas­
sachusetts). So cars will pay tolls both on entering and exiting the bridge, but the tolls 
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will be different. In particular, a car will pay $3 to enter onto the bridge and will pay $2 
to exit. To be sure that there are never too many cars on the bridge, the Authority will 
let a car onto the bridge only if the difference between the amount of money currently at 
the entry toll booth minus the amount at the exit toll booth is strictly less than a certain 
threshold amount of $T0. 

The consultants have decided to model this scenario with a state machine whose states 
are triples of natural numbers, (A, B, C), where 

• A is an amount of money at the entry booth, 

• B is an amount of money at the exit booth, and 

• C is a number of cars on the bridge. 

Any state with C > 1000 is called a collapsed state, which the Authority dearly hopes to 
avoid. There will be no transition out of a collapsed state. 

Since the toll booth collectors may need to start off with some amount of money in order 
to make change, and there may also be some number of “official” cars already on the 
bridge when it is opened to the public, the consultants must be ready to analyze the 
system started at any state. So let A0 be the initial number of dollars at the entrance toll 
booth, B0 the initial number of dollars at the exit toll booth, and C0 the number of official 
cars on the bridge when it is opened. The Authority will be careful to ensure that C0 is 
not large enough to cause a collapse. You should assume that even official cars pay tolls 
on exiting or entering the bridge after the bridge is opened. 

(a) Give a mathematical model of the Authority’s system for letting cars on and off the 
bridge by specifying a transition relation between states of the form (A, B, C) above. 

Solution. State (A, B, C) goes to state 

(i)	 (A+3, B, C +1), provided that A− B < T0 and C < 1000. This transition models the 
case where a car enters the bridge. 

(ii)	 (A, B + 2, C − 1), provided that 0 < C ≤ 1000. This transition models the case where 
a car leaves the bridge. 

(b)	 Characterize each of the following derived variables 

A, B, A + B, A− B, 3C − A, 2A− 3B, B + 3C, 2A− 3B − 6C, 2A− 2B − 3C 

as one of the following 
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constant C 
strictly increasing SI 
strictly decreasing SD 
weakly increasing but not constant WI 
weakly decreasing but not constant WD 
none of the above N 

and briefly explain your reasoning. 

Solution. In every transition, at least one of A and B increases. So their sum is strictly 
increasing. 2A− 3B can fluctuate, going up on (i) and down on (ii). 

The difference 3C − A doesn’t change under transitions of type (i), but decreases under 
transitions of type (ii); so is weakly decreasing. Likewise, B + 3C doesn’t change under 
transitions of type (ii), but increases under transitions of type (i); so is weakly increasing. 

On the other hand, 6C and 2A − 3B simultaneously increase by 6 under transition (i) or 
simultaneously decrease by 6 under transition (ii), which makes their difference constant. 

Finally, under (i), 2A increases by 6, B is unchanged, and 3C increases by 3, so 2A−2B−3C 
increases by 6 − 3 = 3. However, under (ii), A is unchanged, 3C decreases by 3 and 2B 
increases by 4, so 2A− 2B − 3C decreases by −(−4)− 3 = 1. 

The completed table follows. 

A WI 

B WI 

A + B SI 

A− B N 

3C − A WD 

2A− 3B N 

B + 3C N 

2A− 3B − 6C C 

2A− 2B − 3C N 

The Authority has asked their engineering consultants to determine T and to verify that 
this policy will keep the number of cars from exceeding 1000. 
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The consultants reason that if A0 is the initial number of dollars at the entrance toll booth, 
B0 is the initial number of dollars at the exit toll booth, and C0 is the number of official 
cars on the bridge when it is opened, then an additional 1000 −C0 cars can be allowed on 
the bridge, so as long as A − B has not increased by 3(1000 − C0) there shouldn’t more 
than 1000 cars on the bridge. So they recommend defining 

T0 ::= 3(1000 − C0) + (A0 −B0). 

(c) Use the results of part (b) to define a simple predicate, P , on states of the transition 
system which is satisfied by the start state, that is P (A0, B0, C0) holds, is not satisfied by 
any collapsed state, and is an invariant of the system. Verify that the P you define has 
these properties. 

Solution. Let D0 ::= 2A0 − 3B0 − 6C0. 

Invariant: [2A− 3B − 6C = D0] [C ≤ 1000].∧
The invariant obviously holds at the state (A0, B0, C0) because we know that C0 ≤ 1000. 
It does not hold in any collapsed state. To verify the Invariant, assume (A, B, C) satisfies 
the Invariant and has a transition to (A�, B�, C �). We check that (A�, B�, C �) satisfies the 
Invariant by considering the two kinds of transitions. 

Transition (i) (a car enters the bridge): so 

6C � = 6(C + 1) = 6C + 6 = (2A− 3B −D0) + 6 = 2(A + 3)− 3B −D0 = 2A� − 3B� −D0, 

which implies that 
2A� − 3B� − 6C � = D0, (1) 

as required. 

Also, the transition is possible only if A−B < T0. But this implies 

6C � = 2A� − 3B� −D0 (by (1)) 
= 2(A� −B�)−B� −D0 

= 2((A + 3)−B)−B −D0 (since A� = A + 3, B� = B) 
= 2(A−B)−B −D0 + 6 

≤ 2(A−B)−B0 −D0 + 6 (since B is WI) 
≤ 2(T0 − 1) −B0 −D0 + 6 (since A−B ≤ T0 − 1) 
= 2[3(1000 − C0) + (A0 −B0)] −B0 −D0 + 4 

= 6000 − 6C0 + 2A0 − 3B0 −D0 + 4 

= 6004, 

and so C � ≤ �6004/6� = 1000, as required. 

Transition (ii) (a car leaves the bridge): so 

6C � = 6(C − 1) = 6C − 6 = 2A− 3B − 6 = 2A− 3(B + 3) = 2A� − 3B�. 

In addition, C � < C ≤ 1000 so C � ≤ 1000. � 
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(d) A clever MIT intern working for the Turnpike Authority agrees that the Turnpike’s 
bridge management policy will be safe: the bridge will not collapse. But she warns her 
boss that the policy will lead to deadlock— a situation where traffic can’t move on the 
bridge even though the bridge has not collapsed. 

Explain more precisely in terms of system transitions what the intern means, and briefly, 
but clearly, justify her claim. 

Solution. The intern means that any sequence of transitions will arrive at a state in which 
no transition is possible, even though there are no cars on the bridge. This happens be­
cause every time a car enters and then exits the bridge the value of A − B increases by 1. 
So after 3000 cars have crossed the bridge, no further car can enter the bridge because 

A − B ≥ 3000 + A0 − B0 ≥ 3(1000 − C0) + (A0 − B0) = T0. 

After that, cars can only exit the bridge. So after at most 3000+1000 transitions, the system 
deadlocks with the bridge empty but no cars allowed onto the bridge. � 

Problem 3. Vertices u, v in a digraph are said to be unconnected when there is no path 
either from u to v or from v to u. The following procedure can be applied to any digraph, 
G:


Pick two vertices u, v such that either


1. there is an edge (u, v) of G and there is also a path from u to v which does not include 
this edge; in this case, delete the edge (u, v), or 

2. u and v are unconnected; in this case, add the edge (u, v). 

Repeat these operations until it is no longer possible to find vertices u, v to which an 
operation applies. 

This procedure can be modelled as a state machine. The start state is G, and the states 
are all possible digraphs with the same vertices as G. The final states are the digraphs on 
which no operation is possible. 

(a) For any state, G, let e be its number of edges, and p its number of pairs of unconnected 
vertices. Define a decreasing natural number valued derived variable that is a function of 
e and p. Conclude that the procedure terminates started on any finite digraph, G. 

Solution. Let G be a state and G� be the resulting state after a transition. We show this 
derived variable is strictly decreasing by showing 2p + e of G� is less than 2p + e of G. 
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Suppose G� is the result of the first transition. Clearly, e decreases by 1. Thus, all we need 
to show is that p never increases (we do not care if it decreases or remains the same). We 
show this by showing if two arbitrary vertices u and v are connected in G, then they are 
connected in G�. Consider the connected vertices u and v. Call the deleted edge x − y 
going from some vertex x to some vertex y. The only way for u and v to not be connected 
in G� is if all paths between the vertices contain the edge x − y. However, this cannot be 
because for each path containing x − y, there is also a path containing the alternate path 
from x to y that we know must exist (by the condition which we deleted x − y). 

Now suppose G� is the result of the second transition. Clearly, adding an edge cannot 
cause two vertices that were previously connected to become unconnected. By the con­
dition stated in the transition, we know we have connected two vertices that were pre­
viously unconnected. Thus, because no pairs of connected vertices may become uncon­
nected, and because we know of a pair of vertices that were unconnected are becoming 
connected, we can conclude p decreases by at least one, so 2p decreases by at least 2. Yet, 
e only increases by exactly 1. Thus, in this case, 2p + e is decreasing as well. � 

(b) Prove that the set of final states reachable from DAG start states are the line graphs. 

Solution. First, we observe every line graph is a final state. This follows because there are 
no pairs of unconnected vertices and there is some path between every pair of vertices. 

Second, we show that if a digraph is not a line graph, there must be some transition 
possible. If some pair of vertices are not connected, then a transition is possible, so we 
may assume all are connected. Suppose there is a vertex, u, with out­degree at least two. 
So u has edges going to v =� w. But v and w are connected, so without loss of generality, 
we may assume a path goes from w to v. But then a transition removing edge (u, v) is 
possible. A similar argument shows that a transition is possible if there is a vertex with 
in­degree at least two. So every vertex has out­degree and in­degree at most 1 and every 
pair of vertices is connected. This implies the graph is a line graph, as the reader may 
verify. � 

(c) Prove that the property of being a DAG is an invariant of this procedure. 

Solution. To show the property of being a DAG is invariant, we show if G is a DAG, and 
G� is the result of applying one of the two operations 1 and 2 described above to G, then 
G� is a DAG. 

So suppose G� is the result of applying operation 1. Since removing an edge cannot create 
a cycle, G� remains a DAG. 

Next, suppose G� is the result of applying operation 2. We prove G� is acyclic by contra­
diction. Assume some cycle exists. The edge (u, v) must be an edge in the cycle, otherwise 
the cycle would have existed in G as well. Let u be the start vertex of the cycle (we can 
pick the start vertex arbitrarily from any vertices in the cycle). Let the first edge be (u, v). 
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Note there must be a path from v to u to complete the cycle, thus there must have been 
a path from v to u in the graph G. This contradicts the condition on which we added an 
edge from u to v. � 

(d) Prove that if G is a DAG, the procedure terminates with a line graph whose path 
relation is a topological sort of the partial order defined by G. Hint: Strengthen the DAG 
invariant in the previous part. 

Solution. The invariant is that the current DAG is a refinement of the starting DAG, 
where relation R2 is a refinement of relation R1 iff they have the same domain and codomain, 
and xR1y implies xR2y for all x, y. � 

Problem 4. (a) Give an example of a stable match between 3 boys and 3 girls where no 
person gets their first choice. 

Solution. Call the boys 1, 2, 3 and the girls a, b, c. Consider the following preference list: 

choice 1st 2nd 3rd choice 1st 2nd 3rd 
1 a b c a 2 3 1 
2 b c a b 3 1 2 
3 c a b c 1 2 3 

The matching (1, b), (2, c), (3, a) is stable even though no person gets their first choice. 

To see the intuition behind this solution, notice first that the first choice of any boy has 
that boy as her last choice and vice versa. Second, notice that everyone ends up with their 
second choice. 

Since we show a pairing where everyone has their second choice, this is stable because the 
only way to have a rogue pair is for a boy or girl to want their first choice, but their first 
choice always likes them least so will never want to leave their current partner. Therefore, 
we end up with a stable pairing where no one gets their first choice. � 

(b) Describe a simple procedure to determine whether or not a stable marriage problem 
has a unique solution, that is, only one possible stable marriage assignment. 

Solution. See if the Mating algorithm with Boys as suitors yields the same solution as 
the algorithm with Girls as suitors. These two marriage assignments are boy­optimal and 
girl­optimal, respectively, so they agree iff there is a unique solution. � 
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Problem 5. A Harvard BS graduates and starts with an annual salary of $140,000, with 
a $25,000 raise guaranteed every year. An MIT SB graduate starts with $100,000, with a 
guaranteed 15% raise every year. Assume the bankrate is a fixed 3% per year. That is, the 
bank will pay $1.03 a year from now if you deposit $1.00 today. 

(a) Suppose both graduates retire after the same number of years. Use the fact that 
x = o((1 + �)x) to explain why the MIT SB must come out ahead if they work for enough 
years. (You should not make use of closed forms for various sums in your explanation.) 

Solution. The Harvard graduate only gets a fixed annual income raise, so his income 
grows linearly, i.e., Θ(n) where n is the number of years worked. The MIT graduate’s 
raise is based on a certain percentage of his annual income. Therefore, his income grows 
exponentially, i.e., Θ(1.15n). Since n = o(1.15n), we conclude that the MIT grad’s salary 
will eventually grow and stay larger than the Harvard grad’s by more than any fixed 
constant factor. But anyway, once we realize his salary stays larger, it’s clear he will even­
tually catch up and then exceed the total salary paid the Harvard grad. The main question 
is whether this will occur in their lifetimes! 

We have not considered the diminished present value of salary paid years from now. As 
long the bankrate, b, remains lower than the 1.15 factor by which the MIT grad’s salary 
increases annually, then the present value of the year n salary still grows exponentially, 
though more slowly than Θ(1.15n). Namely its growth is Θ((1+�)n) where 1+� ::= 1.15/b. 
So the argument of the preceding paragraph still holds. We can safely assume the MIT 
grad is savvy enough not to accept a job whose annual percent increase was lower than 
the bankrate. � 

(b) Suppose both graduates retire after n years. For which values of n is the MIT gradu­
ate’s salary package better that the Harvard grad’s? 

Solution. One dollar after year i is worth ri in today’s currency, where 

1 
r ::= = 0.970 873 . . . . 

1.03 

So 
n� 

Hvdn = (140000 + 25000i)r i 

i=0 
n� n� 

= 140000 · r i + 25000 · iri , 
i=0 i=0 
n� 

MITn = 100000 · 1.15i r i 

i=0 
n� 

= 100000 · (1.15r)i 

i=0 
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But 
n� r − (n + 1)rn+1 + nrn+2 

,iri = 
(1 − r)2 

i=0 

so 

n+1 +n+1) (r − (n + 1)r nrn+2)
Hvdn = 140000

(1 − r
+ 25000

1 − r (1 − r)2 

n+1 +1000 · (140 · (1 − r − rn+1 + rn+2) + 25 · (r − (n + 1)r nrn+2)) 
= 

(1 − r)2 

rn+2)1000 · (29.2r − (165 + 25n) rn+1 + (140 + 25n)
= 

· · 
(1 − r)2


MITn = 
100000(1 − (1.15r)n+1)


1 − 1.15r

103000


= · ((1.15r)n+1 − 1)
0.12 

and for n = 15, 

Hvd15 = 
1000 · (29.2r − (165 + 25 · 15) · r16 + (140 + 25 · 15) · r17) 

= 4, 034, 764 
(1 − r)2


103000

MIT15 = · ((1.15r)16 − 1) = 4, 146, 917. 

0.12 

Thus the the overall income of the MIT graduate is less the first 14 years and more after 
the 15th year when compared to the Harvard graduate! (Longterm, a MIT degree is worth 
more – but we knew that already.) � 

Problem 6. Books Books and more Books! If the 6.042 staff is to stand a chance at the 
Book Extension Stacking Challenge, we have to consider all the angles! 

Recall the basic book stacking challenge from the course notes where you have an unlim­
ited supply of books to stack that are all the same weight. 

(a) What if instead of all books weighing the same, you have a book that weighs 1 pound, 
a book that weighs 1

4 
pounds, where each successive book 

2 
pounds, a book that weighs 1 

weighs half as much as the previous book. Say you had n such books, and also that the 
you have a duplicate of the lightest book. How far out can you stack the books? Note that 
all books are still the same size, just different weights. Hint: Where should the heaviest 
books be? 
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Solution. The lightest books will be on top. Notice that every time you add a heavier 
book to the bottom, it’s weight will equal the weight of all the books already in the stack. 
Thus, you can model this problem as stacking two books of equal weight. 

Every time you add a heavier book to the bottom, you can extend the stack out by the 
same constant amount. The top of the stack will have its center of gravity at the edge of 
the new bottom book, and the whole stack will have its center of gravity at the edge of 
the table. Thus, the bottom book will stick out 1/4 of its length past the edge of the table. 
Every book you add will add 1/4 of a book length to the extension of the stack! � 

(b) What if you had to stack such that the lightest books were on the bottom of the stack 
and the heaviest books were on top of the stack. How far out can you stack an infinite 
number of books where each book is twice as heavy as the book below it (we’re looking 
for either infinitely far or finitely far)? Justify your answer. 

Solution. Books can only be stacked finitely far. Start with the original book of weight 1. 
Note that this book weighs as much as the rest of the books combined. For contradiction, 
assume that its center of gravity could be more than a half a book length past the edge of 
the table. We know that the center of gravity of the whole system must be before the edge 
of the table, so we know that at least as much weight must be strictly half a book length 
behind the edge of the table (since the total weight available is only equal to the weight of 
the first book). However, that would require that all the other books are fully on the table 
without overhang, and the top book can’t possibly be on top of another book. � 

(c) What if the books were Harmonically weighted: 1,
 11 
2
,


3
, etc., etc., and the heaviest


book had to be on top. Would it be possible for the top of the stack to be arbitrarily far 
past the edge of the table? 

Solution. Yes. 

We know that if all books weighed the same that it would be possible to stack infinitely 
far past the end of the table. We also know that we can stack books on top of eachother 
until they way an arbitrary amount because the Harmonic Series diverges. Therefore, we 
can stack enough books together such that each stack weighs at least twice as much as the 
previous stack. Treating each stack like a book, part a of this problem illustrates how you 
can stack arbitrarily far out from the edge of the table. � 

Problem 7. Use the integral method to find upper and lower bounds for the following
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summation that differ by at most 0.05. 

� 1
∞

i3 
i=1 

Hint: Try adding the first few terms explicitly and then use integrals to bound the sum of 
the remaining terms. 

Solution. We can bound the summation above as follows: � 1
∞

1 1 1 
� ∞ 1 

+ + + dx 
i3 

≤ 
1 8 27 4 (x− 1)3 

i=1 

1 1 1 1 
∞ 

=
1

+
8

+ 
27

+ − 
2 · (x− 1)2 

4 

1 1 1 1 
= + + + 

1 8 27 18 
= 1.2176 . . . 

We can bound the summation below similarly: 

� 1
∞

1 1 1 
� ∞ 1 

+ + + dx 
3i3 

≥ 
1 8 27 4 x

i=1 

1 1 1 1 
∞ 

= + + + − 
2x1 8 27 2 

4 

1 1 1 1 
= + + + 

1 8 27 32 
= 1.1933 . . . 

Problem 8. (a) Given that f(x) = O(g(x)), prove that f(x)2 = O(g(x)2) 

Solution. Since f(x) = O(g(x)), 

∃x0, c ∀x ≥ x0, f(x) g(x)| .| | ≤ c |

So, ∀x ≥ x0 [f(x)2 ≤ c2g(x)2]. Therefore, there exist x0
� ::= x0 and c� ::= c2 such that ∀x ≥ 

x0
� [f(x)2 ≤ c�g(x)2]. So f(x)2 = O(g(x)2). � 
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(b) Let f(x) ::= 2x and g(x) ::= x, so f(x) = O(g(x)). Prove that 2g(x) = o(2f(x)), so 
2f(x) = O(2g(x)). 

Solution. Now 2f(x) = 22x = 4x, and 2g(x) = 2x. So 2g(x)/2f(x) = 2x/4x = 2−x, so the ratio 
goes to zero as x goes to infinity, proving that 2g(x) = o(2f(x)). But h1 = o(h2) implies 
h2 =� O(h1) for any functions h1, h2, so 2f(x) = O(2g(x)). � 
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