Solutions to In-Class Problems Week 3, Fri.

Problem 1. Given an unlimited supply of 3 cent and 5 cent stamps, what postages are possible? Prove it using Strong Induction. *Hint:* Try some examples! Which postage values between 1 and 25 cents can you construct from 3 cent and 5 cent stamps?

Solution. Let's use our examples to first try to guess the answer and then try to prove it. Let's begin filling in a table that shows the values of all possible combinations of 3 and 5 cent stamps. The column heading is the number of 5 cent stamps and the row heading is the number of 3 cent stamps.

	0	1	2	3	4	5	
0	0	5	10	15	20	25	
1	3	8	13	18	23		
2	6	11	16	21			
3	9	14	19	24			
4	12	17	22				
5	15	20					

Looking at the table, a reasonable guess is that the possible postages are 0, 3, 5, and 6 cents and every value of 8 or more cents. Let's try to prove this last part using strong induction.

Claim 1.1. For all $n \ge 8$, it is possible to produce n cents of postage from 3e and 5e stamps.

Now let's preview the proof. The induction hypothesis will be

 $P(n) ::= \text{ if } n \ge 8$, then $n \notin \text{ postage can be produced using } 3 \notin \text{ and } 5 \notin \text{ stamps}$ (1)

A proof by strong induction will have the same five-part structure as an ordinary induction proof. The base case, P(0), won't be interesting because P(n) is *vacuously* true for all n < 8.

In the inductive step we have to show how to produce n + 1 cents of postage, assuming the strong induction hypothesis that we know how to produce $k \notin of$ postage for all values of k between 8 and n. A simple way to do this is to let k = n - 2 and produce $k \notin of$ postage; then add a $3 \notin stamp$ to get n + 1 cents.

But we have to be careful; there is a pitfall in this method. If n + 1 is 8, 9 or 10, then we can not use the trick of creating n + 1 cents of postage from n - 2 cents and a 3 cent stamp. In these cases, n - 2 is less than 8. None of the strong induction assumptions help us make less than 8¢ postage. Fortunately, making n + 1 cents of postage in these three cases can be easily done directly.

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld.

Proof. The proof is by strong induction. The induction hypothesis, P(n), is given by (1).

Base case: n = 0: P(0) is true vacuously.

Inductive step: In the inductive step, we assume that it is possible to produce postage worth $8, 9, \ldots, n$ cents in order to prove that it is possible to produce postage worth n + 1 cents.

There are four cases:

- 1. n + 1 < 8: So P(n + 1) holds vacuously.
- 2. n + 1 = 8: P(n + 1) holds because we produce 8¢ postage using one 3¢ and one 5¢ stamp.
- 3. n + 1 = 9: P(n + 1) holds by using three 3¢ stamps.
- 4. n + 1 = 10: P(n + 1) holds by using two 5¢ stamps.
- 5. n + 1 > 10: We have $n \ge 10$, so $n 2 \ge 8$ and by strong induction we may assume we can produce exactly n 2 cents of postage. With an additional 3¢ stamp we can therefore produce n + 1 cents of postage.

So in every case, $P(0) \land P(1) \land \ldots P(n) \longrightarrow P(n+1)$. By strong induction, we have concluded that P(n) is true for all $n \in \mathbb{N}$.

Problem 2. Use the Well-ordering Principle to prove that there is no solution over the positive integers to the equation:

$$4a^3 + 2b^3 = c^3.$$

Solution. We use contradiction and the well-ordering principle. Let *S* be the set of all positive integers, *a*, such that there exist positive integers, *b*, and, *c*, that satisfy the equation.

Assume for the purpose of obtaining a contradiction that *S* is nonempty. Then *S* contains a smallest element, a_0 , by the well-ordering principle. By the definition of *S*, there exist corresponding positive integers, b_0 , and, c_0 , such that:

$$4a_0^3 + 2b_0^3 = c_0^3$$

The left side of this equation is even, so c_0^3 is even, and therefore c_0 is also even. Thus, there exists an integer, c_1 , such that $c_0 = 2c_1$. Substituting into the preceding equation and then dividing both sides by 2 gives:

$$2a_0^3 + b_0^3 = 4c_1^3$$

Now b_0^3 must be even, so b_0 is even. Thus, there exists an integer, b_1 , such that $b_0 = 2b_1$. Substituting into the preceding equation and dividing both sides by 2 again gives:

$$a_0^3 + 4b_1^3 = 2c_1^3$$

Solutions to In-Class Problems Week 3, Fri.

From this equation, we know that a_0^3 is even, so a_0 is also even. Thus, there exists an integer, a_1 , such that $a_0 = 2a_1$. Substituting into the previous equation one last time and dividing by 2 one last time gives:

$$4a_1^3 + 2b_1^3 = c_1^3$$

Evidently, $a = a_1$, $b = b_1$, and $c = c_1$ is another solution to the original equation, and so a_1 is an element of *S*. But this is a contradiction, because $a_1 < a_0$ and a_0 was defined to be the smallest element of *S*. Therefore, our assumption was wrong, and the original equation has no solutions over the positive integers.

This argument is quite similar to the proof that $\sqrt{2}$ is irrational. In fact, looking back, we implicitly relied on the Well-ordering Principle in that proof when we claimed that a rational number could be written as a fraction in *lowest terms*. We've been using the Well-ordering Principle on the sly from early on!