State Machines II: Derived Variables, Stable Marriage

Derived Variables

Robot on the grid example:
States $Q=\mathbb{N}^{2}$.
Define the sum-value, σ, of a state:

$$
\sigma(\langle x, y\rangle)::=x+y
$$

An \mathbb{N}-valued derived variable.

Derived Variables

Called "derived" to distinguish from actual variables that appear in a program.
For robot Actual: x, y
Derived: σ, π

Derived Variables

A derived variable, v, is a function giving a "value" to each state:
$v: Q \rightarrow$ Values.
If Values $=\mathbb{N}$, we'd say v was
"natural-number-valued," or "N-valued."

Derived Variables

Another derived variable:

$$
\pi::=\sigma(\bmod 2)
$$

π is $\{0,1\}$-valued.

For GCD, have (actual) variables x, y.
Proof of GCD termination: y is strictly decreasing and natural number-valued.

Derived Variables

Termination followed by Well Ordering Principle: y must take a least value and then the algorithm is stuck.

σ, π for the Diagonal Robot σ : up \& down all over the place neither increasing nor decreasing. π : is constant -
both increasing \& decreasing (weakly)

Team Problem

Problem 1

Stable Marriage

Preferences:

Stable Marriage

Preferences

	Try "greedy" strategy for boys
anemes	, mas

Stable Marriage

Stable Marriage

Final "boy greedy" marriages

Stable Marriage

Boy 4 likes Girl C better than his wife.

Stable Marriage

and vice-versa

${ }^{1 c \mathrm{c} 8 \mathrm{M} 25}$

Stable Marriage

Let's Try it! ?Volunteers: 5 Boys \& 5 Girls

Stable Marriage

Mating Algorithm

Morning: boy serenades favorite girl

Mating Algorithm

Morning: boy serenades favorite girl Afternoon: girl rejects all but favorite

Alice

Mating Algorithm

Morning: boy serenades favorite girl Afternoon: girl rejects all but favorite Evening: rejected boy writes off girl

Stop when no girl rejects. Girl marries her favorite suitor.

Mating Algorithm

Partial Correctness:

- Everyone is married.
- Marriages are stable.

Termination:

there exists a Wedding Day.
\qquad kec 8 M .39

Mating Algorithm

Model as State Machine
State q :
Each boy's set of "eligible" girls not crossed off
$q(\mathrm{Bob})=\{$ Carole, Alice, $\ldots\}$

Mating Algorithm: variables
 Derived Variable suitors(Alice): all boys serenading Alice.
 $::=$ serenading $^{-1}$ (Alice)

Stable Marriage: Termination

Derived Variable
boy's-list-length:
total number of names not crossed off boy's lists

$$
::=\Sigma_{b \in \text { boys }}|q(b)|
$$

Stable Marriage: Termination
boy's-list-length:
strictly decreasing \& \mathbb{N}-valued.
So \exists Wedding Day.

Mating Algorithm: variables

Derived Variable favorite(Carole):
Carole's preferred suitor. $::=\max \{$ suitors(Carole) $\}$ using Carole's preference order.

Mating Algorithm: Girls improve

Lemma: A girl's favorite tomorrow will be at least as desirable as today's.

That is, favorite (G) is weakly increasing for each G.

Mating Algorithm

Different girls have different favorites, because boys serenade one girl at a time.
(favorite: Girls \rightarrow Boys
is an injection)

Mating Algorithm: Girls improve

Lemma: A girl's favorite tomorrow will be at least as desirable as today's. ...because today's favorite will stay until she rejects him for someone better.

Mating Algorithm: Boys Get Worse

Lemma: A boy's 1st love tomorrow will be no more desirable than today's.

That is, $\operatorname{serenading}(B)$ is weakly decreasing for each B.

Mating Algorithm: Boys Get Worse

Lemma: A boy's 1st love tomorrow will be no more desirable than today's.
...because boys work straight down their lists.

Mating Algorithm: Invariant

If G has rejected B, then she has a better current favorite.
Proof: favorite (G) is weakly increasing.

Stable Marriage: Termination On Wedding Day:

- Each girl has $\leqq 1$ suitors
- Each boy is married, or has no girls on his list

Mating Algorithm: Everyone Marries
Everyone is Married by Wedding Day Proof: by contradiction.
If B is not married, his list is empty.
By Invariant, all girls have favorites
better than B-- so they do have a favorite.
That is, all girls are married.
So all boys are married.

Mating Algorithm

Who does better, boys or girls?
Girls' suitors get better, and boy's sweethearts get worse, so girls do better? No!

Team Problem

Problem 3

Stable Marriage

More questions, rich theory:
Other stable marriages possible?

- Can be many.

Can a boy do better by lying? - No!
Can a girl do better by lying? - Yes!

