
� @ 

� 

Massachusetts Institute of Technology 
6.042J/18.062J, Fall ’05: Mathematics for Computer Science October 5 
Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised October 5, 2005, 1119 minutes 

Solutions to InClass Problems Week 5, Wed.


Problem 1. Let Ln be the (n+1)vertex line graph, which consists of a single simple path of length n. 
For example, here is L4: 

r r r r r 

The line graph L4. 

A graph is twoended if it has exactly two vertices of degree one and all other vertices have degree 
two. Note that Ln is a twoended graph for every n ≥ 1. 

(a) Draw a diagram of the smallest twoended graph that is not isomorphic to a line graph. 

Solution. Here is the smallest counterexample: r r r r� @r

(b) Identify where the following proof makes a logical error (where something is deduced that 
didn’t follow from the previous results and hypotheses). 

False Theorem. Every twoended graph with n edges is isomorphic to Ln. 

False proof. We prove the thorem by induction on n, the number of edges in the graph, with the 
hypothesis 

P (n) ::= every twoended graph with n edges is isomorphic to Ln. 

Copyright © 2005, Prof. Albert R. Meyer. 



2 Solutions to InClass Problems Week 5, Wed. 

Base case, n = 1: A graph with one edge has the two vertices connected by that edge and some 
number of vertices not attached to any edge, that is, vertices of degree zero. A twoended graph 
cannot have vertices of degree zero, so the only twoended graph with one edge consists of that 
edge and the two vertices it joins, which makes it isomorphic to L1. 

Inductive step: Assume that n ≥ 1, and let Gn be any twoended graph with n edges. By hypoth
esis, Gn is isomorphic to Ln.


Now suppose we have a twoended graph Gn+1. We will show that Gn+1 is also a line graph.

Consider how an edge can be added to the line graph Gn to form a twoended Gn+1:


If an edge with two new vertices is added to any line graph, the result is not twoended because 
it has four degree one vertices. If an edge is attached to one of the degree 2 (“middle”) vertices of 
the line graph, the result is again not twoended because it has a vertex of degree 3. So the only 
way to add an edge to the line graph to get a twoended graph is to have that edge be incident on 
one side to one of the degreeone vertices —that is, to one end — and to on the other side to a new 
vertex. But adding such an edge to the end of a line graph yields a line graph that is one longer. 
So the resulting (n + 1)edge graph, Gn+1, is indeed isomorphic to Ln+1. This proves P (n + 1). 

The Theorem follows by induction. 

Solution. The first logical error is in the nexttolast sentence: “This proves P (n+1).” Something 
other than P (n + 1) was (correctly) proved instead, namely, that every twoended graph built by 
adding an edge to an nvertex line graph, is a line graph, Ln+1. 

But to prove P (n + 1) we had to prove that every twoended graph, Gn+1, with n + 1 vertices is 
a line graph. Since not every such Gn+1 can be built from a line graph by adding an edge (as 
illustrated in part (a)), the proof did not cover all the possible Gn+1’s. 

You might want to argue that the proof made a logical error when it began considering “how an 
edge can be added to the line graph, Gn, to form Gn+1,” but that’s not right. There was no logical 
error at that point. Rather, there was a strategic error that lead to the later logical error. A proof 
could make lots of strategic errors and still wind up being correct, though unduly longwinded, if 
it eventually got back on track with a correct argument at the end. � 

Problem 2. In this problem you will prove: 

Theorem. A graph G is 2colorable iff it contains no odd length cycle. 

As usual with “iff” assertions, the proof splits into two proofs: part (a) asks you to prove that 
the left side of the “iff” implies the right side. The other problem parts prove that the right side 
implies the left. 

(a) Assume the left side and prove the right side. Three to five sentences should suffice. 

Solution. First, we assume that G is 2colorable and prove that G contains no odd length cycle. 

Select a 2coloring of G. Consider an arbitrary cycle with successive vertices v1, v2, . . . , vk, v1. 
Then the vertices vi must be one color for all even i even and the other color for all odd i. (We 



1
2
3
4
5
6

3 Solutions to InClass Problems Week 5, Wed. 

could confirm this claim with a proof by induction, but it seems obvious enough to accept without 
further proof.) Since v1 and vk must be colored differently, k must be even. Thus, the cycle has 
even length. We can make the same argument for any cycle in G, so every cycle has even length.� 

(b) Now assume the right side. As a first step toward proving the left side, explain why we can 
focus on a single connected component H within G. 

Solution. Next, we assume that G contains no odd cycle and prove that G is 2colorable. If we can 
2color every connected component of G, then we can 2color all of G. Thus, it suffices to show 
that an arbitrary connected component H of G is 2colorable. � 

(c) Choose any 2coloring of a spanning tree, T , of H . Prove that H is 2colorable by showing 
that any edge not in T must also connect differentcolored vertices. 

Solution. Any 2coloring of T can be defined by selecting any fixed vertex v, and coloring a vertex 
one color if the (unique) path from to it from v has odd length, and coloring it with the other color 
if the path has even length. 

Now let x—y be an edge not T , and consider the unique paths in T . Let z be the last vertex on the 
path from v to x that also occurs on the path from v to y. Of the paths from z to x and from z to y, 
exactly one must have odd length; otherwise, these two paths together with the edge x—y would 
form an odd length cycle. 

Now let p be the path from v to z. The v to x path must be p followed by the z to x path, and the v 
to y path must be p followed by the z to y path. So exactly one of the paths from v to x and from v 
to y has odd length, which means x and y are colored differently. � 

Problem 3. A portion of a computer program consists of a sequence of calculations where the 
results are stored in variables, like this: 

Inputs: a, b 
Step . c = a + b 

. d = a ∗ c 

. e = c + 3 

. 

. 
f 
g 

= 
= 

c − e 
a + f 

. h = f + 1 
Outputs: d, g, h 

A computer can perform such calculations most quickly if the value of each variable is stored in

a register, a chunk of very fast memory inside the microprocessor. Computers usually have few




� 

4 Solutions to InClass Problems Week 5, Wed. 

registers, however, so they must be used wisely and reused often. The problem of assigning each 
variable in a program to a register is called register allocation. 

In the example above, variables a and b must be assigned different registers, because they hold 
distinct input values. Furthermore, c and d must be assigned different registers; if they used the 
same one, then the value of c would be overwritten in the second step and we’d get the wrong 
answer in the third step. On the other hand, variables b and d may use the same register; after the 
first step, we no longer need b and can overwrite the register that holds its value. Also, f and h 
may use the same register; once f + 1 is evaluated in the last step, the register holding the value 
of f can be overwritten. 

(Assume that the computer carries out each step in the order listed and that each step is completed 
before the next is begun.) 

(a) Recast the register allocation problem as a question about graph coloring. What do the ver
tices correspond to? Under what conditions should there be an edge between two vertices? Con
struct the graph corresponding to the example above. 

Solution. There is one vertex for each variable. An edge between two vertices indicates that the 
values of the variables must be stored in different registers. 

We can classify each appearance of a variable in the program as either an assignment or a use. In 
particular, an appearance is an assignment if the variable is on the left side of an equation or on 
the “Inputs” line. An appearance of a variable is a use if the variable is on the right side of an 
equation or on the “Outputs” line. 

The lifetime of a variable is the segment of code extending from the initial assignment of the vari
able until the last use. There is an edge between two variables if their lifetimes overlap. This rule 
generates the following graph: 

a b c d e f g h

R2R2R1 R3 R4 R2 R1 R2

(b) Color your graph using as few colors as you can. Call the computer’s registers R1, R2, etc. 
Describe the assignment of variables to registers implied by your coloring. How many registers 
do you need? 

Solution. Four registers are needed. One possible assignment of variables to registers is indicated 
in the figure above. 



5 Solutions to InClass Problems Week 5, Wed. 

In general, coloring a graph using the minimum number of colors is quite difficult; no efficient 
procedure is known. However, the register allocation problem always leads to an interval graph. 
For interval graphs, there are efficient coloring procedures, which can be incorporated into a com
piler. � 

(c) Suppose that a variable is assigned a value more than once, as in the code snippet below: 

. . . 

t = r + s 
u = t ∗ 3 
t = m− k 

v = t + u 

. . . 

How might you cope with this complication? 

Solution. Each time a variable is reassigned, we could regard it as a completely new variable. 
Then we would regard the example as equivalent to the following: 

. . . 

t = r + s 
u = t ∗ 3 
t� = m− k 

v = t� + u 

. . . 

We can now proceed with graph construction and coloring as before. � 


	Problem 1
	(a)
	(b)

	Problem 2
	(a)
	(b)
	(c)

	Problem 3
	(a)
	(b)
	(c)


