

Planar Graphs

A graph is planar if there is a way to draw it in the plane without edges crossing.

Planar Graphs

draw it edge by edge:

Planar Graphs

and record faces while drawing graph $<$

Planar Graphs

and record faces while drawing

If you like curves...

With same faces, you can draw the graph in the plane big or small, curvy or straight:

"Planar Drawing" = Faces

An (abstract) planar drawing is defined to be its set of faces. The same planar graph may have different drawings.

Problem 1

Euler's Formula

Proof by induction on \# edges in drawing:
base case: no edges
connected, \quad so $v=1$
outside face only, so $f=1$

$$
1-0+1=2 \quad \begin{aligned}
& e=0 \\
& \text { बK }
\end{aligned}
$$

Adding an edge to a drawing

Inductive step: any $n+1$ edge drawing comes from adding an edge to some n edge drawing.
(not a buildup error: it's the definition of drawing edge by edge)
So can assume Euler for n edge drawing and see what happens to $v-e+f$ when 1 edge is added.

Adding an edge to a drawing

Two cases for connected graph:

1) Attach edge from vertex on a face to a new vertex.
2) Attach edge between vertices on a face.

Euler's Formula

If a connected planar drawing has v vertices, e edges, and f faces, then

$$
v-e+f=2
$$

Face Creation Rules

1) choose face add edge to new vertex

old face $i x v$

Face Creation Rules

1) choose face add edge to new vertex

new face is wvxvw

Euler's Formula

v increases by 1
e increases by 1
f stays the same so $v-e+f$ stays the same

Face Creation Rules

1) choose face add edge to new vertex
nothing else changes
new face is wvxvw

Face Creation Rules

2) choose face add edge across it

old face: wरxyw

Face Creation Rules

2) choose face add edge across it

splits into 2 faces: $w x v w, v y w v$

Face Creation Rules
 2) choose face add edge across it nothing else changes

splits into 2 faces: $w x v w$, vywv

Euler's Formula

Euler's Formula
v stays the same e increases by 1
f increases by 1
so $v-e+f$ stays the same

Team Problems

Problems 2 \& 3

Mathematics for Computer Science
MIT 6.042J/18.062J

Bipartite Matching: Hall's Theorem

suppose this edge was missing

Compatible Boys \& Girls

Bottleneck condition

Bottleneck Lemma

bottleneck: not enough boys for some set of girls.
If there is a bottleneck, then no match is possible. $S \subseteq G, \mathrm{~N}(S)::=\{b \mid b$ adjacent to a $g \in S\}$,

$$
|S|>|\mathrm{N}(S)|
$$

Hall's Theorem

There is a perfect match iff there are no bottlenecks. Proof in Notes: clever strong induction on \#girls.
(Better proof using duality principle goes beyond 6.042)

Hall's Theorem

There is a perfect match iff there are no bottlenecks.
Lots of elegant use in applications

Problem 4

Team Problem

