Massachusetts Institute of Technology
6.042J / 18.062J, Fall '05: Mathematics for Computer Science

Solutions to In-Class Problems Week 11, Fri.

Problem 1. (a) Verify that

$$
\frac{1}{(1-x)^{k}}=\sum_{n=0}^{\infty}\binom{n+k-1}{n} x^{n} .
$$

Hint: Use the fact that if $A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then

$$
a_{n}=\frac{A^{(n)}(0)}{n!},
$$

where $A^{(n)}$ is the nth derivative of A.
Solution.

$$
\begin{aligned}
& \frac{d(1-x)^{-k}}{d x}=k(1-x)^{-(k+1)} \\
& \frac{d^{2}(1-x)^{-k}}{(d x)^{2}}=\frac{d k(1-x)^{-(k+1)}}{d x}=(k+1) k(1-x)^{-(k+2)} \\
& \frac{d^{3}(1-x)^{-k}}{(d x)^{3}}=\frac{d(k+1) k(1-x)^{-(k+2)}}{d x}=(k+2)(k+1) k(1-x)^{-(k+3)} \\
& \vdots \\
& \frac{d^{n}(1-x)^{-k}}{(d x)^{n}}=(k+n-1) \cdots(k+2)(k+1) k(1-x)^{-(k+n)} .
\end{aligned}
$$

Now suppose $(1-x)^{-k}=A(x)$. Then by the hint, we have

$$
\begin{aligned}
a_{n} & =\frac{A^{(n)}(0)}{n!} \\
& =\frac{(k+n-1) \cdots(k+2)(k+1) k(1-0)^{-(k+n)}}{n!} \\
& =\frac{\frac{(n+k-1)!}{(k-1)!} \cdot 1}{n!} \\
& =\frac{(n+k-1)!}{(k-1)!n!} \\
& =\binom{n+k+1}{n}
\end{aligned}
$$

(b) Let $S(x)::=\sum_{k=1}^{\infty} k^{2} x^{k}$. Explain why $S(x) /(1-x)$ is the generating function for the sums of squares. That is, the coefficient of x^{n} in the series for $S(x) /(1-x)$ is $\sum_{k=1}^{n} k^{2}$.

Solution.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} x^{n}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} \cdot 1\right) x^{n}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k}\right) x^{n} \tag{1}
\end{equation*}
$$

by the convolution formula for the product of series. For $S(x)$, the coefficient of x^{k} is $a_{k}=k^{2}$, and

$$
S(x) /(1-x)=S(x)\left(\sum_{n=0}^{\infty} x^{n}\right),
$$

so (1) implies that the coefficient of x^{n} in $S(x) /(1-x)$ is the sum of the first n squares.
(c) Use the fact that

$$
S(x)=\frac{x(1+x)}{(1-x)^{3}},
$$

and the previous part to prove that

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution. We have

$$
\begin{equation*}
\frac{S(x)}{1-x}=\frac{\frac{x(1+x)}{(1-x)^{3}}}{1-x}=\frac{x+x^{2}}{(1-x)^{4}} . \tag{2}
\end{equation*}
$$

From part (a), the coefficient of x^{n} in the series expansion of $1 /(1-x)^{4}$ is

$$
\binom{n+3}{n}=\frac{(n+1)(n+2)(n+3)}{3!} .
$$

But by (2),

$$
\frac{S(x)}{1-x}=\frac{x}{(1-x)^{4}}+\frac{x^{2}}{(1-x)^{4}},
$$

so the coefficient of x^{n} is the sum of the $(n-1)$ st and $(n-2)$ nd coefficients of $(1-x)^{4}$, namely,

$$
\frac{n(n+1)(n+2)}{3!}+\frac{(n-1) n(n+1)}{3!}=\frac{n(n+1)(2 n+1)}{6} .
$$

(d) (Optional) How about a formula for the sum of cubes?

Solution. TBA

Problem 2. We are interested in generating functions for the number of different ways to compose a bag of n donuts subject to various restrictions. For each of the restrictions in (a)-(e) below, find a closed form for the corresponding generating function.
(a) All the donuts are chocolate and there are at least 3 .

Solution.

$$
\frac{x^{3}}{1-x}
$$

(b) All the donuts are glazed and there are at most 2 .

Solution.

$$
1+x+x^{2}
$$

(c) All the donuts are coconut and there are exactly 2 or there are none.

Solution.

$$
1+x^{2}
$$

(d) All the donuts are plain and their number is a multiple of 4.

Solution.

$$
\frac{1}{1-x^{4}}=\frac{1}{(1-x)(1+x)\left(1+x^{2}\right)}
$$

(e) The donuts must be chocolate, glazed, coconut, or plain and:

- there must be at least 3 chocolate donuts, and
- there must be at most 2 glazed, and
- there must be exactly 0 or 2 coconut, and
- there must be a multiple of 4 plain.

Solution.

$$
\begin{aligned}
\frac{x^{3}}{1-x}\left(1+x+x^{2}\right)\left(1+x^{2}\right) \frac{1}{1-x^{4}} & =\frac{x^{3}\left(1+x+x^{2}\right)\left(1+x^{2}\right)}{(1-x)^{2}(1+x)\left(1+x^{2}\right)} \\
& =\left(x^{3}+x^{4}+x^{5}\right) \frac{1}{(1-x)^{2}(1+x)}
\end{aligned}
$$

(f) Find a closed form for the number of ways to select n donuts subject to the constraints of the previous part.

Solution.

$$
\frac{1}{(1-x)^{2}(1+x)}=\frac{1 / 2}{(1-x)^{2}}+\frac{1 / 4}{1-x}+\frac{1 / 4}{1+x}
$$

so the nth coefficient in its generating function is

$$
\frac{n+1}{2}+\frac{1}{4}+\frac{(-1)^{n}}{4}=\frac{2 n+3+(-1)^{n}}{4}
$$

The number ways to select n donuts is the sum of the $(n-3)$ rd, $(n-4)$ th, and $(n-5)$ th of these coefficients, namely

$$
\frac{2(n-3)+2(n-4)+2(n-5)+9+(-1)^{n-3}+(-1)^{n-4}+(-1)^{n-5}}{4}=\frac{6 n-15+(-1)^{n-1}}{4}
$$

Appendix

Products of Series

Let

$$
A(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, \quad B(x)=\sum_{n=0}^{\infty} b_{n} x^{n}, \quad C(x)=A(x) \cdot B(x)=\sum_{n=0}^{\infty} c_{n} x^{n} .
$$

Then

$$
c_{n}=a_{0} b_{n}+a_{1} b_{n-1}+a_{2} b_{n-2}+\cdots+a_{n} b_{0} .
$$

