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In­Class Problems Week 14, Fri. 

Problem 1. A prison warden has two holding cells, Cell 1 and Cell 2, for his prison­
ers. Unfortunately, many pairs of these prisoners are incompatible, and there will be some 
trouble if an incompatible pair are in the same cell. The warden would like to minimize 
trouble by not having too many incompatible pairs in the same cell. Unfortunately, the 
warden has no idea how to split the up prisoners, and so he decides to go with a random 
assignment: he will assign prisoners to one cell or the other by successive (independent) 
flips of a fair coin. 

For any two incompatible prisoners, a, b, let Ta,b be 1 if a and b are placed in the same cell, 
and 0 otherwise. 

(a) What is the expected value of Ta,b? 

Suppose there are n incompatible sets of prisoners, a, b. The total trouble, T , of an assign­
ment of prisoners to cells is the sum of Ta,b where the sum is over the n sets of incompatible 
prisoners a =� b. So T is the total number of incompatible sets of two prisoners that are in 
the same cell. The warden hopes to minimize the total trouble, T . 

(b) What is the expected value of T ? 

(c) Explain why there must be a split of the prisoners between cells that separates at 
least half the incompatible pairs. 

(d) Suppose a, b, c are different prisoners, where a and b are incompatible, and a and c 
are also incompatible. Explain why Ta,b is independent of Ta,c. Conclude that set of all the 
Ta,b’s is pairwise independent. 

(e) Are the Ta,b’s mutually independent? 

(f) What is the variance of T ? 

(g) Suppose among 1000 prisoners, about a fifth of the pairs, say 100,000 pairs, turn out 
to be incompatible. Show that there is at most a 10% chance that the warden’s random 
assignment differs by more than 1% from the expected number of incompatible pairs in 
the same cell. Hint: Chebyshev. 
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Problem 2. Now we look at the situation in the previous problem in more detail. Suppose 
there are levels of conflict between incompatible prisoners, where the conflict level of two 
prisoners who may hate each other’s guts is 1 if they wouldn’t actually touch each other, 
2 if they might hurt each other but wouldn’t cause a trip to the hospital, and 3 if having 
them in the same cell would be really bad. Suppose we model the situation by assuming 
that a random conflict level wa,b equal to 1,2, or 3 is assigned to every two incompatible 
prisoners, a, b, uniformly and independently of all other conflict levels. 

So Ta,bwa,b is 0 if a, b are placed in different cells and is wa,b otherwise. Define the total 
conflict to be 

C ::= Ta,bwa,b, 
a,b incompatible 

that is, the sum of the levels of conflicting pairs in which the members are assigned to the 
same cell. We would like the total conflict to be small. 

(a) What is the expected value of wa,b and Ta,bwa.b? 

(b) What is the variance of wa,b and Ta,bwa,b? 

(c) What is the expected value of C? 

(d) Are the Ta,bwa,b’s pairwise independent? . . . mutually independent? 

(e) What is the variance of C? 

(f) What does Chebyshev’s inequality give for a bound on Pr {|C − E [C]|} > n/4? 

(g) Suppose someone complains about our modeling the situation as choosing a random 
conflict level of 1,2, or 3, and agrees only that conflict levels range between 1 and 3. So 
then the w’s for different incompatible pairs may have different distributions, but we still 
assume they are independent. Could we still use Chebyshev’s inequality to say some­
thing about the probability of deviating from the mean? Hint: : What is the maximum 
possible variance for a random variable with values between 0 and 3? 
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Problem 3. A recent Gallup poll found that 35% of the adult population of the United 
States believes that the theory of evolution is “well­supported by the evidence”. Gallup 
polled 1928 people and claims a margin of error of 3 percentage points. 

Let’s check Gallup’s claim. Suppose that there are m adult Americans, of whom pm be­
lieve in evolution; this means that (1− p)m Americans do not believe in evolution. Gallup 
polls 1928 Americans selected uniformly and independently at random. Of these, 675 be­
lieve in evolution, leading to Gallup’s estimate that the fraction of Americans who believe 
in evolution is within 0.03 of 675/1928 ≈ 0.350. 

(a) Explain how to use the Binomial Sampling Theorem (available in the Appendix) to 
determine the confidence level with which Gallup can make his claim. You do not actually 
have to do the calculation, but are welcome to if you have the means. 

(b) If we accept all of Gallup’s polling data and calculations, can we conclude that there 
is a high probability that the number of adult Americans who believe in evolution is 35±3 
percent? 

(c) Explaining Sampling to a Jury The calculation above revealed that, based on a poll 
of 1928 people, we can be highly confident that the per cent of people in the U.S. who 
believe in evolution is 35% ± 3%. Note that the actual population of the U.S. was never 
considered, because it did not matter! 

Suppose you were going to serve as an expert witness in a trial. How would you explain 
to a jury why the number of people necessary to poll does not depend on the population size? 
(Begin by explaining why it is reasonable to model polling as independent coin tosses. 
Remember that juries do not understand algebra or equations; you might be ok using a 
little arithmetic.) 
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1 Appendix 

1.1 Binomial Sampling 

Theorem. Let K1, K2, . . . , be a sequence of mutually independent 0­1­valued random variables 
with the same expectation, p, and let 

n

Sn ::= Ki. 
i=1 

Then, for 1/2 > � > 0, 

(1 H((1/2) �))− − −n2� 
22π(1/4 � )− n 

1 + 2�SnPr . (1)≥ � ≤
n 
− p 

2� 
· 

1.2 Scheme Code for Sampling Bounds 

(define (pr n eps)

(* (/ (+ 1 (* 2 eps)) (* 2 eps)


(sqrt (* 2 pi (­ 1/4 (* eps eps))))

(expt 2 (* n (­ 1 (h (­ 1/2 eps)))))

(sqrt n))))


(define (h a)

(cond ((>= 0 a) 1)


((>= a 1) 1)

(else (­ (+ (* a (log2 a)) (* (­ 1 a) (log2 (­ 1 a))))))))


(define (log2 a) (/ (log a) (log 2)))


(define pi (* 4 (atan 1)))


(pr 1928 0.03)

;Value: 9.982587419699058e­3


1.3 Chebyshev’s Theorem 

Theorem (Chebyshev). Let R be a random variable, and let x be a positive real number. Then 

Var [R] 
. (2)

2 
Pr {|R− E [R]| ≥ x} ≤ 

x
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