## State machine:

Step by step procedure, possibly responding to input.

## State Machines, I: Invariants



## Die Hard



## State machines

Die hard state machine
State $=$ amount of water in the jug: $(b, l)$ where $0 \leq b \leq 9$ and $0 \leq l \leq 3$.
Start State $=(0,0)$

## State machines

## Die Hard Transitions:

1. Fill the little jug: $\quad(b, l) \rightarrow(b, 3)$ for $l<3$
2. Fill the big jug: $\quad(b, l) \rightarrow(9, l)$ for $b<9$
3. Empty the little jug: $\quad(b, l) \rightarrow(b, 0)$ for $l>0$
4. Empty the big jug:
$(b, l) \rightarrow(0, l)$ for $b>0$

## State Invariants

Die hard once and for all Invariant:
$P($ state ) ::= " 3 divides the number of gallons in each jug."
$P((b, l))::=(3|b \wedge 3| l)$


## State machines

5. Pour from big jug into little jug (for $b>0$ ):
(i) If $\underbrace{\text { no overflow }}_{b+l \leqq 3}$, then $(b, l) \rightarrow(0, b+l)$,
(ii) otherwise $(b, l) \rightarrow(b-(3-l), 3)$.
6. Pour from little jug into big jug. Likewise.

## State Invariants

Floyd's Invariant Method (just like induction)

1) Base case: Show P(start).
2) Invariant case: Show

$$
\text { if } P(q) \text { and } q \longrightarrow r \text {, then } P(r)
$$

3) Conclusion: $P$ holds for all reachable states, including final state (if any).


## Robot Invariant

NO!
$P((x, y))::=x+y$ is even $P((0,0))$ is true.

Transition adds $\pm 1$ to both $x$ and $y$

## Team Problem

## Problem 1

| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 |  | 10 | 5 |
| 3 | 1 | 4 | 14 |
| 15 | 8 | 11 | 2 |

## The Fifteen Puzzle Explained!

A Robot on the Diagonal
Can it reach from $(0,0)$ to $(1,0)$ ?


## Robot Invariant

So all positions $(x, y)$ reachable by robot have $x+y$ even, but $1+0=1$ is odd.

Therefore $(1,0)$ is not reachable.

## GCD correctness

Example: GCD $(414,662)$
$=\operatorname{GCD}(662,414) \quad$ since $\operatorname{rem}(414,662)=414$
$=\operatorname{GCD}(414,248) \quad$ since rem $(662,414)=248$
$=\operatorname{GCD}(248,166) \quad$ since $\operatorname{rem}(414,248)=166$
$=\operatorname{GCD}(166,82) \quad$ since $\operatorname{rem}(248,166)=82$
$=\operatorname{GCD}(82,2) \quad$ since $\operatorname{rem}(166,82)=2$
$=\operatorname{GCD}(2,0) \quad$ since rem $(82,2) \quad=0$
Return value: 2.

## GCD correctness

Euclid Algorithm as State Machine:

- States ::= $\mathbb{N} \times \mathbb{N}$,
- start ::= (a,b),
- state transitions defined by the rule
$(x, y) \rightarrow(y, \operatorname{rem}(x, y)) \quad$ for $y \neq 0$.


## GCD correctness

The Invariant is
$P((x, y))::=\quad[\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)]$.
$P($ start $):$ at start $x=a, y=b$, so $P($ start $) \equiv[\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b)]$ which holds trivially.

## GCD correctness

Transitions: $(x, y) \rightarrow(y, \operatorname{rem}(x, y))$
Invariant holds by
Lemma: $\operatorname{gcd}(x, y)=\operatorname{gcd}(y, \operatorname{rem}(x, y))$, for $y \neq 0$.

## GCD correctness

Conclusion: on termination

$$
x=\operatorname{gcd}(a, b)
$$

Proof: On termination, $y=0$, so $x=\operatorname{gcd}(x, 0)=\underbrace{\operatorname{gcd}(x, y)=\operatorname{gcd}(a, b)}_{\text {invariant }}$



