
Massachusetts Institute of Technology 
6.042J/18.062J, Fall ’05: Mathematics for Computer Science September 9 
Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised September 8, 2005, 1063 minutes 

Solutions to InClass Problems Week 1, Fri. 

Problem 1. Albert & Ronitt announce that they plan a surprise 6.042 quiz next week. Their stu
dents wonder if the quiz could be next Friday. The students realize that it obviously cannot, 
because if it hadn’t been given before Friday, everyone would know that there was only Friday 
left on which to give it, so it wouldn’t be a surprise any more. 

So the students ask whether Albert & Ronitt could give the surprise quiz Thursday? They observe 
that if the quiz wasn’t given before Thursday, it would have to be given on the Thursday, since 
they already know it can’t be given on Friday. But having figured that out, it wouldn’t be a 
surprise if the quiz was on Thursday either. Similarly, the students reason that the quiz can’t be 
on Wednesday, Tuesday, or Monday. Namely, it’s impossible for Albert & Ronitt to give a surprise 
quiz next week. All the students now relax having concluded that Albert & Ronitt must have been 
bluffing. 

And since no one expects the quiz, that’s why, when Albert & Ronitt give it on Tuesday next week, 
it really is a surprise! 

What do you think is wrong with the students’ reasoning? 

Solution. The basic problem is that “surprise” is not a mathematical concept, nor is there any 
generally accepted way to give it a mathematical definition. The “proof” above assumes some 
plausible axioms about surprise, without defining it. The paradox is that these axioms are incon
sistent. But that’s no surprise :), since—mathematically speaking—we don’t know what we’re 
talking about. 

Mathematicians and philosophers have had a lot more to say about what might be wrong with the 
students’ reasoning, (see Chow, Timothy Y. The surprise examination or unexpected hanging paradox, 
American Math. Monthly (January 1998), pp.41–51.) � 

Problem 2. Identify the antecedents and conclusions of each of the following deductions and 

Copyright © 2005, Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld. 



2 Solutions to InClass Problems Week 1, Fri. 

translate them into propositional logic notation using logical operators: 

∧ ::= AND, 

∨ ::= OR, 

¬ ::= NOT, 

−→ ::= IMPLIES, 

::= IFF (if and only if) ←→ 

This may require that you “pin down” a statement that could be interpreted in more than one way. 

Identify which of the deductions are sound ones. 

(a) Jane and Pete won’t both win the math prize. Pete will win either the math prize or the 
chemistry prize. Jane will win the math prize. Thus, Pete will win the chemistry prize. 

Solution. The deduction is: 
¬ (J ∧ M), M ∨ C, J 

C 

where 

J ::= “Jane will win the math prize.” 

M ::= “Pete will win the math prize.” 

C ::= “Pete will win the chemistry prize.” 

This deduction is sound. � 

(b) The main course will be beef or fish. The vegetable will be peas or corn. We will not have 
both fish as a main course and corn as a vegetable. Therefore, we will not have both beef as a main 
course and peas as a vegetable. 

Solution. The deduction is: 
B ∨ F, C ∨ P, ¬ (F ∧ C) 

¬ (B ∧ P ) 

where 

B ::= “The main course will be beef.” 

F ::= “The main course will be fish.” 

C ::= “The vegetable will be corn.” 

P ::= “The vegetable will be peas.” 

This deduction is not sound. For example, B ∧ ¬ F ∧ C ∧ P is consistent with the antecedents but 
not with the conclusion. Note that as formalized, there need not be only one main course and 
only one vegetable; it is possible, for example, for the vegetable to be both corn and peas, as in the 
scenario given. 

If we wished to exclude the possibility of multiple courses we could have used exclusiveor instead 
of inclusiveor. So our antecedent about the main course would then read B ⊕ F or, equivalently, 
(B∨ F )∧ ¬ (B∧ F ). The antecedent about the vegetable could be changed similarly. The deduction 
is still unsound in this formalization. � 



3 Solutions to InClass Problems Week 1, Fri. 

(c) Either John or Bill is telling the truth. Either Sam or Bill is lying. Thus, either John is telling 
the truth or Sam is lying.


Solution. We interpret “John is lying,” to be the negation of “John is telling the truth.” Similarly

for the corresponding propositions involving Bill and Sam. The deduction is:


J ∨B, ¬S ∨ ¬B 

J ∨ ¬S 

where 

J ::= “John is telling the truth.” 

B ::= “Bill is telling the truth.” 

S ::= “Sam is telling the truth.” 

This deduction is sound. It is an example of a common “cancellation” or cut rule that lets us get 
rid of the proposition B in the conclusion. � 

(d) Either sales will go up and the boss will be happy, or expenses will go up and the boss won’t 
be happy. Therefore, sales and expenses will not both go up. 

Solution. The deduction is: 
(S ∧H) ∨ (E ∧ ¬H) 

¬(S ∧ E) 

where 

S ::= “Sales will go up.” 

H ::= “The boss will be happy.” 

E ::= “Expenses will go up.” 

This deduction is not sound. For example, S ∧ E ∧ H is consistent with the antecedent but not 
with the conclusion. � 

Problem 3. Boolean logic comes up in digital circuit design using the convention that T corre
sponds to 1 and F to 0. For example, suppose we want to describe a circuit with n + 1 inputs 
an, an−1, . . . , a1, a0 which are the n + 1 bits of the binary representation of an integer, k, between 0 
and 2n+1 − 1. We want outputs on+1, on, . . . , o1, o0 to be the bits of k + b where b is a single bit. 

For example, for n = 1, the formulas 

o0 ::= a0 ⊕ b 

c1 ::= a0 ∧ b the carry into column 1 

o1 ::= c1 ⊕ a1 

c2 ::= c1 ∧ a1 the carry into column 2 

o2 ::= c2 

do the job. Here ⊕ is the “mod 2 sum” operator: a⊕ b is 1 iff a + b is even. 



� 

� 

4 Solutions to InClass Problems Week 1, Fri. 

(a) Generalize the example above for any n ≥ 0. That is, give simple formulas for oi and ci for 
0 ≤ i ≤ n + 1. 

Solution. Define 

o0 ::= a0 ⊕ b, 

ci+1 ::= ai ∧ ci for 0 ≤ i ≤ n, 

oi+1 ::= ci+1 ⊕ ai+1 for 0 ≤ i < n, 

on+1 ::= cn+1. 

(b) Write similar definitions for the n+1 bits of the sum of two binary numbers an, an−1, . . . , a1, a0 

and bn, bn−1, . . . , b1, b0. 

Solution. Define 

o0 ::= a0 ⊕ b0, 

ci+1 ::= (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci) for 0 ≤ i ≤ n, 

oi+1 ::= ci+1 ⊕ ai+1 ⊕ bi+1 for 0 ≤ i < n, 

on+1 ::= cn+1. 

(c) How many Boolean operations does your system use to calculate the sum? 

Solution. The scheme above uses 3(n + 1) AND’S, 2n + 1 MOD2SUMS and 2(n + 1) OR’s for a 
total of 7n + 5 operations. � 


	Problem 1
	Problem 2
	(a)
	(b)
	(c)
	(d)

	Problem 3
	(a)
	(b)
	(c)


