

	Sum for Children		
	+ 1	15	
154			$+$
193	+	...	+
232	+	...	+
323	+	...	+
414	+		

Sum for Children
Nine-year old Gauss saw
30 numbers each 13 greater than the previous one.
(So the story goes.)

Sum for Children

$1^{\text {st }}+30^{\text {th }}=89+466$	$=555$
$2^{\text {nd }}+29^{\text {th }}=$	
$\left(1^{\text {st }}+13\right)+\left(30^{\text {th }}-13\right)$	$=555$
$3^{\text {rd }}+28^{\text {th }}=$	
$\left(2^{\text {nd }}+13\right)+\left(29^{\text {th }}-13\right)$	$=555$

Sum for Children
Sum of $k^{\text {th }}$ term and $(31-k)^{\text {th }}$ term is invariant!
Total $=555 \cdot 15$
$=\left(1^{\text {st }}+\right.$ last $) \cdot(\#$ terms $/ 2)$
$=\left(\left(1^{\text {st }}+\right.\right.$ last $\left.) / 2\right) \cdot(\#$ terms $)$

Geometric Series

$$
\begin{aligned}
& G_{n}::=1+x+x^{2}+\cdots \quad+x^{n-1}+x^{n} \\
& x G_{n}=x+x^{2}+x^{3}+\cdots \quad+x^{n}+x^{n+1}
\end{aligned}
$$

Geometric Series

$$
G_{n}=\frac{1-x^{n+1}}{1-x}
$$

Consider the infinite sum (series)
$1+x+x^{2}+\cdots+x^{n-1}+x^{n}+\cdots+=\sum_{i=0}^{\infty} x^{i}$

Infinite Geometric Series

$$
G_{n}=\frac{1-x^{n+1}}{1-x}
$$

$\lim _{n \rightarrow \infty} G_{n}=\frac{1-\lim _{n \rightarrow \infty} x^{n+1}}{1-x}=\frac{1}{1-x}$

Infinite Geometric Series

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

$$
\text { for } x<1
$$

The future value of \$\$

I will promise to pay you $\$ 100$
in exactly one year,
if you will pay me $\$ \mathrm{X}$ now.

Problem 1

Team Problem

8-2.14

The future value of \$\$

My bank will pay me 3\% interest.
Define bankrate:

$$
b::=1.03
$$

-- the factor by which bank will increase my holdings in 1 year.
merease my noramgs in lyear.

The future value of $\$ \$$
If I deposit your $\$ \mathrm{X}$ for a year, I will have $\$(b \cdot X)$.
So I won't lose money as long as

$$
\begin{gathered}
b X \geq 100 . \\
X \geq \$ 100 / 1.03 \approx \$ 97.09
\end{gathered}
$$

The future value of $\$ \$$

- $\$ 1$ in a year is worth $\$ 0.9709$ today
- $\$ n$ is worth $\$ n r$ a year earlier, where $r::=1 / b$.
- So $\$ n$ paid in two years is worth
$\$ n r$ paid in one year, and is worth $\$ n r^{2}$ today.

The future value of $\$ \$$

\$n paid k years from now

 is worth $\$ n r^{k}$ today where $r::=1 /$ bankrate.
Annuities

I will pay you $\$ 100 /$ year for 10 years if you will pay me $\$$ Y now.
I can't lose if you pay me
$100 r+100 r^{2}+100 r^{3}+\ldots+100 r^{10}$
$=100 r\left(1+r+\ldots+r^{9}\right)$
$=100 r\left(1-r^{10}\right) /(1-r)=\$ 853.02$

Annuities
I will pay you $\$ 100 /$ year for 10 years
if you will pay me $\$ 853.02$ now.
QUICKIE: If bankrates unexpectedly increase in the next few years,
A. I come out ahead
B. You come out ahead
C. The deal stays fair

Team Problem

Problems
 2,3

