Propositional Logic, II
Proof by Contradiction Proof by Cases

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.
Proof (by contradiction):

- Suppose $\sqrt{2}$ was rational.
- Choose m, n integers without common prime factors (always possible) such that

$$
\sqrt{2}=\frac{m}{n}
$$

- Show that $m \& n$ are both even, a contradiction!

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.
Proof (by contradiction):

Proof by Truth Tables

DeMorgan's Law
$\neg(P \vee Q)$ is equivalent to $\bar{P} \wedge \bar{Q}$

P	Q	$\neg(P \vee Q)$	
T	T	F	T
T	F	F	T
F	T	F	T
F	F	T	F

\bar{P}	\bar{Q}	$\bar{P} \wedge \bar{Q}$
F	F	F
F	T	F
T	F	F
T	T	T

Proposed Deduction Rule

P implies Q, Q implies R, R implies P Conclude: $\quad P, Q$, and R are true.

$$
\frac{(P \rightarrow Q),(Q \rightarrow R),(R \rightarrow P)}{P \wedge Q \wedge R}
$$

From

Sound Rule?

Conclusion true whenever all antecedents true.

$$
P \rightarrow Q \quad Q \rightarrow R \quad R \rightarrow P \quad P \wedge Q \wedge R
$$

Sound Rule?

Conclusion true whenever all antecedents true.

$p \rightarrow q$	$q \rightarrow r$	$r \rightarrow p$
T	T	T
T	F	T
F	T	T
F	T	T
T	T	F
T	F	T
T	T	F
T	T	T

$p \wedge q \wedge r$	sound?
T	
F	
F	
F	
F	
F	
F	
F	
$\underbrace{}_{\text {Conclusion }}$	

Quicker by Cases

$$
\frac{P \rightarrow Q, Q \rightarrow R, R \rightarrow P}{P \wedge Q \wedge R}
$$

Case 1: P is true. Now, if antecedents are true, then Q must be true (because P implies Q).
Then R must be true (because Q implies R).
So the conclusion $P \wedge Q \wedge R$ is true.
This case is OK.

$$
\begin{gathered}
\text { Quicker by Cases } \\
\frac{P \rightarrow Q, Q \rightarrow R, R \rightarrow P}{P \wedge Q \wedge R}
\end{gathered}
$$

Case 2: P is false. To make antecedents true, R must be false (because R implies P), so Q must be false (because Q implies R).
This assignment does make the antecedents true, but the conclusion $P \wedge Q \wedge R$ is (very) False.

This case is not OK.

Goldbach Conjecture

Every even integer greater than 2 is the sum of two primes.
Evidence: $\quad 4=2+2$

$$
6=3+3
$$

$$
8=5+3
$$

$$
20=? \quad 13+7
$$

It remains an OPEN problem: no counterexample, no proof.

UNTIL NOW!...

Team Problem

Problems 2 \& 3

