

Choose origin so center of n-stack at $x=0$. Now center of $n+1^{\text {st }}$ book is at $x=1 / 2$, so center of $n+1$-stack is at

$$
x=\frac{n \cdot 0+1 \cdot 1 / 2}{n+1}=\frac{1}{2(n+1)}
$$

Book stacking summary
$\mathrm{B}_{n}::=$ overhang of n books
$\mathrm{B}_{1}=1 / 2$
$B_{n+1}=B_{n}+\frac{1}{2(n+1)}$

$$
\mathrm{B}_{n}=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\right)
$$

So $\mathrm{H}_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and so overhang can be any desired size.

Team Problem

Problem 1

Aprit 52004

Closed form for \boldsymbol{n} !

Factorial defines a product:

$$
n!::=1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n=\prod_{i=1}^{n} i
$$

Turn product into a sum taking logs:

$$
\begin{aligned}
\ln (n!) & =\ln (1 \cdot 2 \cdot 3 \cdots(n-1) \cdot n) \\
& =\ln 1+\ln 2+\cdots+\ln (n-1)+\ln (n) \\
& =\sum_{i=1}^{n} \ln (i)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Integral Method } \\
& \left.\begin{array}{rl}
{\left[\begin{array}{rl}
\ln x d x & =x \ln \left(\frac{x}{e}\right) \\
& =x \ln x-x
\end{array}\right.}
\end{array} \begin{array}{rl}
\\
\end{array}\right]
\end{aligned}
$$

Quickie:
verify by differentiating.

Integral Method

Bounds on $\ln (n!)$
$\int_{1}^{n} \ln (x) d x \leq \sum_{i=1}^{n} \ln (i) \leq \int_{1}^{n} \ln (x+1) d x$ $n \ln \left(\frac{n}{e}\right)+1 \leq \sum_{i=1}^{n} \ln (i) \leq(n+1) \cdot \ln \left(\frac{n+1}{e}\right)+0.6$

So guess: $\quad \sum_{i=1}^{n} \ln (i) \approx\left(n+\frac{1}{2}\right) \ln \left(\frac{n}{e}\right)$

Integral Method

$$
\sum_{i=1}^{n} \ln (i) \approx\left(n+\frac{1}{2}\right) \ln \left(\frac{n}{e}\right)
$$

exponentiating:

$$
n!\approx \sqrt{n / e}\left(\frac{n}{e}\right)^{n}
$$

Asymptotic Equivalence	
	$f(n) \sim g(n)$
	$\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}\right)=1$

Team Problem
Problem 3

