In-Class Problems Week 11, Wed.

Problem 1. Define the function $f: \mathbb{N} \rightarrow \mathbb{N}$ recursively by the rules

$$
\begin{aligned}
& f(0)=1 \\
& f(1)=6 \\
& f(n)=2 f(n-1)+3 f(n-2)+4 \quad \text { for } n \geq 2 .
\end{aligned}
$$

(a) Find a closed form for the generating function

$$
G(x)::=f(0)+f(1) x+f(2) x^{2}+\cdots+f(n) x^{n}+\cdots .
$$

(b) Find a closed form for $f(n)$. Hint: Find numbers a, b, c, d, e, g such that

$$
G(x)=\frac{a}{1+d x}+\frac{b}{1+e x}+\frac{c}{1+g x} .
$$

Appendix

Finding a Generating Function for Fibonacci Numbers

The Fibonacci numbers are defined by:

$$
\begin{aligned}
& f_{0}::=0 \\
& f_{1}::=1 \\
& f_{n}::=f_{n-1}+f_{n-2} \quad(\text { for } n \geq 2)
\end{aligned}
$$

Let F be the generating function for the Fibonacci numbers, that is,

$$
F(x)::=f_{0}+f_{1} x+f_{2} x^{2}+f_{3} x^{3}+f_{4} x^{4}+\cdots
$$

So we need to derive a generating function whose series has coefficients:

$$
\left\langle 0,1, f_{1}+f_{0}, f_{2}+f_{1}, f_{3}+f_{2}, \ldots\right\rangle
$$

Now we observe that

[^0]This sequence is almost identical to the right sides of the Fibonacci equations. The one blemish is that the second term is $1+f_{0}$ instead of simply 1 . But since $f_{0}=0$, the second term is ok.
So we have

$$
\begin{align*}
& F(x)=x+x F(x)+x^{2} F(x) . \\
& F(x)=\frac{x}{1-x-x^{2}} . \tag{1}
\end{align*}
$$

Finding a Closed Form for the Coefficients

Now we expand the righthand side of (1) into partial fractions. To do this, we first factor the denominator

$$
1-x-x^{2}=\left(1-\alpha_{1} x\right)\left(1-\alpha_{2} x\right)
$$

where $\alpha_{1}=\frac{1}{2}(1+\sqrt{5})$ and $\alpha_{2}=\frac{1}{2}(1-\sqrt{5})$ by the quadratic formula. Next, we find A_{1} and A_{2} which satisfy:

$$
\begin{equation*}
F(x)=\frac{x}{1-x-x^{2}}=\frac{A_{1}}{1-\alpha_{1} x}+\frac{A_{2}}{1-\alpha_{2} x} \tag{2}
\end{equation*}
$$

Now the coefficient of x^{n} in $F(x)$ will be A_{1} times the coefficient of x^{n} in $1 /\left(1-\alpha_{1} x\right)$ plus A_{2} times the coefficient of x^{n} in $1 /\left(1-\alpha_{2} x\right)$. The coefficients of these fractions will simply be the terms α_{1}^{n} and α_{2}^{n} because

$$
\begin{aligned}
& \frac{1}{1-\alpha_{1} x}=1+\alpha_{1} x+\alpha_{1}^{2} x^{2}+\cdots \\
& \frac{1}{1-\alpha_{2} x}=1+\alpha_{2} x+\alpha_{2}^{2} x^{2}+\cdots
\end{aligned}
$$

by the formula for geometric series.
So we just need to find find A_{1} and A_{2}. We do this by plugging values of x into (2) to generate linear equations in A_{1} and A_{2}. It helps to note that from (2), we have

$$
x=A_{1}\left(1-\alpha_{2} x\right)+A_{2}\left(1-\alpha_{1} x\right),
$$

so simple values to use are $x=0$ and $x=1 / \alpha_{2}$. We can then find A_{1} and A_{2} by solving the linear equations. This gives:

$$
\begin{aligned}
& A_{1}=\frac{1}{\alpha_{1}-\alpha_{2}}=\frac{1}{\sqrt{5}} \\
& A_{2}=\frac{-1}{\alpha_{1}-\alpha_{2}}=-\frac{1}{\sqrt{5}}
\end{aligned}
$$

Substituting into (2) gives the partial fractions expansion of $F(x)$:

$$
F(x)=\frac{1}{\sqrt{5}}\left(\frac{1}{1-\alpha_{1} x}-\frac{1}{1-\alpha_{2} x}\right) .
$$

So we conclude that the coefficient, f_{n}, of x^{n} in the series for $F(x)$ is

$$
\begin{aligned}
f_{n} & =\frac{\alpha_{1}^{n}-\alpha_{2}^{n}}{\sqrt{5}} \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

[^0]: Copyright © 2005, Prof. Albert R. Meyer.

