In-Class Problems Week 10, Mon.

Problem 1. A bipartite graph is regular if every vertex on the left has the same degree, c, and every vertex on the right has the same degree, d.
(a) Prove the following:

Corollary. A regular bipartite graph has a matching for the vertices on the left iff $c \geq d>0$.
Hint: Consider the set of edges between any set, L, on the left and its set of neighbors, $N(L)$, on the right.
(b) Conclude that the Magician could pull off the Card Trick with a deck of 124 cards.

Problem 2. We have just demonstrated how to determine the 5th card in a poker hand when a collaborator reveals the other 4 cards. Describe a similar method for determining 2 hidden cards in a hand of 9 cards when your collaborator reveals the other 7 cards.

Problem 3. The Tao of BOOKKEEPER: we seek enlightenment through contemplation of the word BOOKKEEPER.
(a) In how many ways can you arrange the letters in the word $P O K E$?
(b) In how many ways can you arrange the letters in the word $\mathrm{BO}_{1} \mathrm{O}_{2} \mathrm{~K}$? Observe that we have subscripted the O's to make them distinct symbols.
(c) Suppose we map arrangements of the letters in $\mathrm{BO}_{1} \mathrm{O}_{2} \mathrm{~K}$ to arrangements of the letters in $B O O K$ by erasing the subscripts. Indicate with arrows how the arrangements on the left are mapped to the arrangements on the right.

$O_{2} B O_{1} K$	
$K O_{2} B O_{1}$	$B O O K$
$O_{1} B O_{2} K$	$O B O K$
$K O_{1} B O_{2}$	$K O B O$
$B O_{1} O_{2} K$	\cdots
$B O_{2} O_{1} K$	
\ldots	

(d) What kind of mapping is this, young grasshopper?
(e) In light of the Division Rule, how many arrangements are there of $B O O K$?
(f) Very good, young master! How many arrangements are there of the letters in $K E_{1} E_{2} P E_{3} R$?
(g) Suppose we map each arrangement of $K E_{1} E_{2} P E_{3} R$ to an arrangement of $K E E P E R$ by erasing subscripts. List all the different arrangements of $K E_{1} E_{2} P E_{3} R$ that are mapped to $R E P E E K$ in this way.
(h) What kind of mapping is this?
(i) So how many arrangements are there of the letters in $K E E P E R$?
(j) Now you are ready to face the BOOKKEEPER!

How many arrangements of $B O_{1} O_{2} K_{1} K_{2} E_{1} E_{2} P E_{3} R$ are there?
(k) How many arrangements of $B O O K_{1} K_{2} E_{1} E_{2} P E_{3} R$ are there?
(1) How many arrangements of $B O O K K E_{1} E_{2} P E_{3} R$ are there?
(m) How many arrangements of BOOK KEEPER are there?
(n) How many arrangements of $V O O D O O D O L L$ are there?
(o) (IMPORTANT) How many n-bit sequences contain k zeros and $(n-k)$ ones?

Remember well what you have learned: subscripts on, subscripts off.
This is the Tao of Bookkeeper.

Problem 4. Solve the following counting problems. Define an appropriate mapping (bijective or k-to-1) between a set whose size you know and the set in question.
(a) How many different ways are there to select a dozen donuts if four varieties are available?
(b) How many paths are there from $(0,0)$ to $(10,20)$ consisting of right-steps (which increment the first coordinate) and up-steps (which increment the second coordinate)?
(c) An independent living group is hosting nine new candidates for membership. Each candidate must be assigned a task: 1 must wash pots, 2 must clean the kitchen, 3 must clean the bathrooms, 1 must clean the common area, and 2 must serve dinner. In how many ways this be done?
(d) In how many ways can Mr. and Mrs. Grumperson distribute 13 identical pieces of coal to their two- no, three!- children for Christmas?
(e) How many solutions over the natural numbers are there to the equation:

$$
x_{1}+x_{2}+\ldots+x_{10} \leq 100
$$

(f) (Quiz 2, Fall '03) Suppose that two identical 52-card decks are mixed together. In how many ways can the cards in this double-size deck be arranged?

