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16 Events and Probability Spaces

16.1 Let’s Make a Deal

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant
responded to this letter:

Suppose you’re on a game show, and you’re given the choice of three
doors. Behind one door is a car, behind the others, goats. You pick a
door, say number 1, and the host, who knows what’s behind the doors,
opens another door, say number 3, which has a goat. He says to you,
“Do you want to pick door number 2?” Is it to your advantage to
switch your choice of doors?

Craig. F. Whitaker
Columbia, MD

The letter describes a situation like one faced by contestants in the 1970’s game
show Let’s Make a Deal, hosted by Monty Hall and Carol Merrill. Marilyn replied
that the contestant should indeed switch. She explained that if the car was behind
either of the two unpicked doors—which is twice as likely as the the car being
behind the picked door—the contestant wins by switching. But she soon received
a torrent of letters, many from mathematicians, telling her that she was wrong. The
problem became known as the Monty Hall Problem and it generated thousands of
hours of heated debate.

This incident highlights a fact about probability: the subject uncovers lots of
examples where ordinary intuition leads to completely wrong conclusions. So until
you’ve studied probabilities enough to have refined your intuition, a way to avoid
errors is to fall back on a rigorous, systematic approach such as the Four Step
Method that we will describe shortly. First, let’s make sure we really understand
the setup for this problem. This is always a good thing to do when you are dealing
with probability.

16.1.1 Clarifying the Problem
Craig’s original letter to Marilyn vos Savant is a bit vague, so we must make some
assumptions in order to have any hope of modeling the game formally. For exam-
ple, we will assume that:
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1. The car is equally likely to be hidden behind each of the three doors.

2. The player is equally likely to pick each of the three doors, regardless of the
car’s location.

3. After the player picks a door, the host must open a different door with a goat
behind it and offer the player the choice of staying with the original door or
switching.

4. If the host has a choice of which door to open, then he is equally likely to
select each of them.

In making these assumptions, we’re reading a lot into Craig Whitaker’s letter. There
are other plausible interpretations that lead to different answers. But let’s accept
these assumptions for now and address the question, “What is the probability that
a player who switches wins the car?”

16.2 The Four Step Method

Every probability problem involves some sort of randomized experiment, process,
or game. And each such problem involves two distinct challenges:

1. How do we model the situation mathematically?

2. How do we solve the resulting mathematical problem?

In this section, we introduce a four step approach to questions of the form, “What
is the probability that. . . ?” In this approach, we build a probabilistic model step
by step, formalizing the original question in terms of that model. Remarkably, this
structured approach provides simple solutions to many famously confusing prob-
lems. For example, as you’ll see, the four step method cuts through the confusion
surrounding the Monty Hall problem like a Ginsu knife.

16.2.1 Step 1: Find the Sample Space
Our first objective is to identify all the possible outcomes of the experiment. A
typical experiment involves several randomly-determined quantities. For example,
the Monty Hall game involves three such quantities:

1. The door concealing the car.

2. The door initially chosen by the player.
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car location

Figure 16.1 The first level in a tree diagram for the Monty Hall Problem. The
branches correspond to the door behind which the car is located.

3. The door that the host opens to reveal a goat.

Every possible combination of these randomly-determined quantities is called an
outcome. The set of all possible outcomes is called the sample space for the exper-
iment.

A tree diagram is a graphical tool that can help us work through the four step
approach when the number of outcomes is not too large or the problem is nicely
structured. In particular, we can use a tree diagram to help understand the sample
space of an experiment. The first randomly-determined quantity in our experiment
is the door concealing the prize. We represent this as a tree with three branches, as
shown in Figure 16.1. In this diagram, the doors are called A, B , and C instead of
1, 2, and 3, because we’ll be adding a lot of other numbers to the picture later.

For each possible location of the prize, the player could initially choose any of
the three doors. We represent this in a second layer added to the tree. Then a third
layer represents the possibilities of the final step when the host opens a door to
reveal a goat, as shown in Figure 16.2.

Notice that the third layer reflects the fact that the host has either one choice
or two, depending on the position of the car and the door initially selected by the
player. For example, if the prize is behind door A and the player picks door B, then
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car location player’s door
intial revealed
guess

Figure 16.2 The full tree diagram for the Monty Hall Problem. The second level
indicates the door initially chosen by the player. The third level indicates the door
revealed by Monty Hall.
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the host must open door C. However, if the prize is behind door A and the player
picks door A, then the host could open either door B or door C.

Now let’s relate this picture to the terms we introduced earlier: the leaves of the
tree represent outcomes of the experiment, and the set of all leaves represents the
sample space. Thus, for this experiment, the sample space consists of 12 outcomes.
For reference, we’ve labeled each outcome in Figure 16.3 with a triple of doors
indicating:

.door concealing prize; door initially chosen; door opened to reveal a goat/:

In these
⇢
terms, the sample space is the set

.A; A; B/; .A; A; C /; .A; B; C /; .A; C; B/; .B; A; C /; .B; B; A/;S D

.B; B; C /; .B; C; A/; .C; A; B/; .C; B; A/; .C; C; A/; .C; C; B/

�

The tree diagram has a broader interpretation as well: we can regard the whole
experiment as following a path from the root to a leaf, where the branch taken at
each stage is “randomly” determined. Keep this interpretation in mind; we’ll use it
again later.

16.2.2 Step 2: Define Events of Interest
Our objective is to answer questions of the form “What is the probability that . . . ?”,
where, for example, the missing phrase might be “the player wins by switching,”
“the player initially picked the door concealing the prize,” or “the prize is behind
door C.”

A set of outcomes is called an event. Each of the preceding phrases characterizes
an event. For example, the event Œprize is behind door C ç refers to the set:

f.C; A; B/; .C; B; A/; .C; C; A/; .C; C; B/g;
and the event Œprize is behind the door first picked by the playerç is:

f.A; A; B/; .A; A; C /; .B; B; A/; .B; B; C /; .C; C; A/; .C; C; B/g:
Here we’re using square brackets around a property of outcomes as a notation for
the event whose outcomes are the ones that satisfy the property.

What we’re really after is the event Œplayer wins by switchingç:

f.A; B; C /; .A; C; B/; .B; A; C /; .B; C; A/; .C; A; B/; .C; B; A/g: (16.1)

The outcomes in this event are marked with checks in Figure 16.4.
Notice that exactly half of the outcomes are checked, meaning that the player

wins by switching in half of all outcomes. You might be tempted to conclude that
a player who switches wins with probability 1=2. This is wrong. The reason is that
these outcomes are not all equally likely, as we’ll see shortly.
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car location player’s door outcome
intial revealed
guess

Figure 16.3 The tree diagram for the Monty Hall Problem with the outcomes la-
beled for each path from root to leaf. For example, outcome .A; A; B/ corresponds
to the car being behind door A, the player initially choosing door A, and Monty
Hall revealing the goat behind door B .
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car location player’s door outcome switch
intial revealed wins
guess

T

T

T

T

T

T

Figure 16.4 The tree diagram for the Monty Hall Problem, where the outcomes
where the player wins by switching are denoted with a check mark.
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16.2.3 Step 3: Determine Outcome Probabilities
So far we’ve enumerated all the possible outcomes of the experiment. Now we
must start assessing the likelihood of those outcomes. In particular, the goal of this
step is to assign each outcome a probability, indicating the fraction of the time this
outcome is expected to occur. The sum of all the outcome probabilities must equal
one, reflecting the fact that there always must be an outcome.

Ultimately, outcome probabilities are determined by the phenomenon we’re mod-
eling and thus are not quantities that we can derive mathematically. However, math-
ematics can help us compute the probability of every outcome based on fewer and
more elementary modeling decisions. In particular, we’ll break the task of deter-
mining outcome probabilities into two stages.

Step 3a: Assign Edge Probabilities

First, we record a probability on each edge of the tree diagram. These edge-
probabilities are determined by the assumptions we made at the outset: that the
prize is equally likely to be behind each door, that the player is equally likely to
pick each door, and that the host is equally likely to reveal each goat, if he has a
choice. Notice that when the host has no choice regarding which door to open, the
single branch is assigned probability 1. For example, see Figure 16.5.

Step 3b: Compute Outcome Probabilities

Our next job is to convert edge probabilities into outcome probabilities. This is a
purely mechanical process:

calculate the probability of an outcome by multiplying the edge-probabilities
on the path from the root to that outcome.

For example, the probability of the topmost outcome in Figure 16.5, .A; A; B/, is

1 1 1 1
: (16.2)

3
�

3
�

2
D

18

We’ll examine the official justification for this rule in Section 17.4, but here’s an
easy, intuitive justification: as the steps in an experiment progress randomly along
a path from the root of the tree to a leaf, the probabilities on the edges indicate
how likely the path is to proceed along each branch. For example, a path starting
at the root in our example is equally likely to go down each of the three top-level
branches.

How likely is such a path to arrive at the topmost outcome, .A; A; B/? Well,
there is a 1-in-3 chance that a path would follow the A-branch at the top level, a
1-in-3 chance it would continue along the A-branch at the second level, and 1-in-2
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chance it would follow the B-branch at the third level. Thus, there is half of a one
third of a one third chance, of arriving at the .A; A; B/ leaf. That is, the chance is
1=3 �1=3 �1=2 D 1=18—the same product (in reverse order) we arrived at in (16.2).

We have illustrated all of the outcome probabilities in Figure 16.5.
Specifying the probability of each outcome amounts to defining a function that

maps each outcome to a probability. This function is usually called PrŒ�ç. In these
terms, we’ve just determined that:

1
PrŒ.A; A; B/ç D ;

18
1

PrŒ.A; A; C /ç D ;
18
1

PrŒ.A; B; C /ç D ;
9

etc.

16.2.4 Step 4: Compute Event Probabilities
We now have a probability for each outcome, but we want to determine the proba-
bility of an event. The probability of an event E is denoted by PrŒEç, and it is the
sum of the probabilities of the outcomes in E. For example, the probability of the
[switching wins] event (16.1) is

PrŒswitching winsç
D PrŒ.A; B; C /çC PrŒ.A; C; B/çC PrŒ.B; A; C /çC

PrŒ.B; C; A/çC PrŒ.C; A; B/çC PrŒ.C; B; A/ç

1 1 1 1 1 1D
9
C

9
C

9
C

9
C

9
C

9
2D :
3

It seems Marilyn’s answer is correct! A player who switches doors wins the car
with probability 2=3. In contrast, a player who stays with his or her original door
wins with probability 1=3, since staying wins if and only if switching loses.

We’re done with the problem! We didn’t need any appeals to intuition or inge-
nious analogies. In fact, no mathematics more difficult than adding and multiplying
fractions was required. The only hard part was resisting the temptation to leap to
an “intuitively obvious” answer.
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car location player’s door outcome switch probability
intial revealed wins
guess
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Figure 16.5 The tree diagram for the Monty Hall Problem where edge weights
denote the probability of that branch being taken given that we are at the parent of
that branch. For example, if the car is behind door A, then there is a 1/3 chance that
the player’s initial selection is door B . The rightmost column shows the outcome
probabilities for the Monty Hall Problem. Each outcome probability is simply the
product of the probabilities on the path from the root to the outcome leaf.
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16.2.5 An Alternative Interpretation of the Monty Hall Problem
Was Marilyn really right? Our analysis indicates that she was. But a more accurate
conclusion is that her answer is correct provided we accept her interpretation of the
question. There is an equally plausible interpretation in which Marilyn’s answer
is wrong. Notice that Craig Whitaker’s original letter does not say that the host is
required to reveal a goat and offer the player the option to switch, merely that he
did these things. In fact, on the Let’s Make a Deal show, Monty Hall sometimes
simply opened the door that the contestant picked initially. Therefore, if he wanted
to, Monty could give the option of switching only to contestants who picked the
correct door initially. In this case, switching never works!

16.3 Strange Dice

The four-step method is surprisingly powerful. Let’s get some more practice with
it. Imagine, if you will, the following scenario.

It’s a typical Saturday night. You’re at your favorite pub, contemplating the true
meaning of infinite cardinalities, when a burly-looking biker plops down on the
stool next to you. Just as you are about to get your mind around pow.pow.R//,
biker dude slaps three strange-looking dice on the bar and challenges you to a $100
wager. His rules are simple. Each player selects one die and rolls it once. The
player with the lower value pays the other player $100.

Naturally, you are skeptical, especially after you see that these are not ordinary
dice. Each die has the usual six sides, but opposite sides have the same number on
them, and the numbers on the dice are different, as shown in Figure 16.6.

Biker dude notices your hesitation, so he sweetens his offer: he will pay you
$105 if you roll the higher number, but you only need pay him $100 if he rolls
higher, and he will let you pick a die first, after which he will pick one of the other
two. The sweetened deal sounds persuasive since it gives you a chance to pick what
you think is the best die, so you decide you will play. But which of the dice should
you choose? Die B is appealing because it has a 9, which is a sure winner if it
comes up. Then again, die A has two fairly large numbers, and die C has an 8 and
no really small values.

In the end, you choose die B because it has a 9, and then biker dude selects
die A. Let’s see what the probability is that you will win. (Of course, you probably
should have done this before picking die B in the first place.) Not surprisingly, we
will use the four-step method to compute this probability.
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Figure 16.6 The strange dice. The number of pips on each concealed face is the
same as the number on the opposite face. For example, when you roll die A, the
probabilities of getting a 2, 6, or 7 are each 1=3.

16.3.1 Die A versus Die B

Step 1: Find the sample space.
The tree diagram for this scenario is shown in Figure 16.7. In particular, the sample
space for this experiment are the nine pairs of values that might be rolled with Die A

and Die B:
For this experiment, the sample space is a set of nine outcomes:

S D f .2; 1/; .2; 5/; .2; 9/; .6; 1/; .6; 5/; .6; 9/; .7; 1/; .7; 5/; .7; 9/ g:

Step 2: Define events of interest.
We are interested in the event that the number on die A is greater than the number
on die B . This event is a set of five outcomes:

f .2; 1/; .6; 1/; .6; 5/; .7; 1/; .7; 5/ g:

These outcomes are marked A in the tree diagram in Figure 16.7.

Step 3: Determine outcome probabilities.
To find outcome probabilities, we first assign probabilities to edges in the tree di-
agram. Each number on each die comes up with probability 1=3, regardless of
the value of the other die. Therefore, we assign all edges probability 1=3. The
probability of an outcome is the product of the probabilities on the correspond-
ing root-to-leaf path, which means that every outcome has probability 1=9. These
probabilities are recorded on the right side of the tree diagram in Figure 16.7.
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die die winner probability 
of outcome

Figure 16.7 The tree diagram for one roll of die A versus die B . Die A wins with
probability 5=9.
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Step 4: Compute event probabilities.
The probability of an event is the sum of the probabilities of the outcomes in that
event. In this case, all the outcome probabilities are the same, so we say that the
sample space is uniform. Computing event probabilities for uniform sample spaces
is particularly easy since you just have to compute the number of outcomes in the
event. In particular, for any event E in a uniform sample space S ,

PrŒEç
jEjD : (16.3)jSj

In this case, E is the event that die A beats die B , so jEj D 5, jSj D 9, and

PrŒEç D 5=9:

This is bad news for you. Die A beats die B more than half the time and, not
surprisingly, you just lost $100.

Biker dude consoles you on your “bad luck” and, given that he’s a sensitive guy
beneath all that leather, he offers to go double or nothing.1 Given that your wallet
only has $25 in it, this sounds like a good plan. Plus, you figure that choosing die A

will give you the advantage.
So you choose A, and then biker dude chooses C . Can you guess who is more

likely to win? (Hint: it is generally not a good idea to gamble with someone you
don’t know in a bar, especially when you are gambling with strange dice.)

16.3.2 Die A versus Die C

We can construct the tree diagram and outcome probabilities as before. The result
is shown in Figure 16.8, and there is bad news again. Die C will beat die A with
probability 5=9, and you lose once again.

You now owe the biker dude $200 and he asks for his money. You reply that you
need to go to the bathroom.

16.3.3 Die B versus Die C

Being a sensitive guy, biker dude nods understandingly and offers yet another wa-
ger. This time, he’ll let you have die C . He’ll even let you raise the wager to $200
so you can win your money back.

This is too good a deal to pass up. You know that die C is likely to beat die A

and that die A is likely to beat die B , and so die C is surely the best. Whether biker
1Double or nothing is slang for doing another wager after you have lost the first. If you lose again,

you will owe biker dude double what you owed him before. If you win, you will owe him nothing;
in fact, since he should pay you $210 if he loses, you would come out $10 ahead.
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die die winner probability 
of outcome

Figure 16.8 The tree diagram for one roll of die C versus die A. Die C wins with
probability 5=9.
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dude picks A or B , the odds would be in your favor this time. Biker dude must
really be a nice guy.

So you pick C , and then biker dude picks B . Wait—how come you haven’t
caught on yet and worked out the tree diagram before you took this bet? If you do
it now, you’ll see by the same reasoning as before that B beats C with probabil-
ity 5=9. But surely there is a mistake! How is it possible that

C beats A with probability 5=9,

A beats B with probability 5=9,

B beats C with probability 5=9?

The problem is not with the math, but with your intuition. Since A will beat B

more often than not, and B will beat C more often than not, it seems like A ought
to beat C more often than not, that is, the “beats more often” relation ought to
be transitive. But this intuitive idea is simply false: whatever die you pick, biker
dude can pick one of the others and be likely to win. So picking first is actually a
disadvantage, and as a result, you now owe biker dude $400.

Just when you think matters can’t get worse, biker dude offers you one final
wager for $1,000. This time, instead of rolling each die once, you will each roll
your die twice, and your score is the sum of your rolls, and he will even let you
pick your die second, that is, after he picks his. Biker dude chooses die B . Now
you know that die A will beat die B with probability 5=9 on one roll, so, jumping
at this chance to get ahead, you agree to play, and you pick die A. After all, you
figure that since a roll of die A beats a roll of die B more often that not, two rolls
of die A are even more likely to beat two rolls of die B , right?

Wrong! (Did we mention that playing strange gambling games with strangers in
a bar is a bad idea?)

16.3.4 Rolling Twice
If each player rolls twice, the tree diagram will have four levels and 34 D 81

outcomes. This means that it will take a while to write down the entire tree dia-
gram. But it’s easy to write down the first two levels as in Figure 16.9(a) and then
notice that the remaining two levels consist of nine identical copies of the tree in
Figure 16.9(b).

The probability of each outcome is .1=3/4 D 1=81 and so, once again, we have a
uniform probability space. By equation (16.3), this means that the probability that
A wins is the number of outcomes where A beats B divided by 81.

To compute the number of outcomes where A beats B , we observe that the two
rolls of die A result in nine equally likely outcomes in a sample space SA in which
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1st 2nd sum of 1st 2nd sum of
roll roll  rolls roll roll  rolls

Figure 16.9 Parts of the tree diagram for die B versus die A where each die is
rolled twice. The first two levels are shown in (a). The last two levels consist of
nine copies of the tree in (b).

the two-roll sums take the values

.4; 8; 8; 9; 9; 12; 13; 13; 14/:

Likewise, two rolls of die B result in nine equally likely outcomes in a sample
space SB in which the two-roll sums take the values

.2; 6; 6; 10; 10; 10; 14; 14; 18/:

We can treat the outcome of rolling both dice twice as a pair .x; y/ 2 SA ⇥ SB ,
where A wins iff the sum of the two A-rolls of outcome x is larger the sum of the
two B-rolls of outcome y. If the A-sum is 4, there is only one y with a smaller
B-sum, namely, when the B-sum is 2. If the A-sum is 8, there are three y’s with
a smaller B-sum, namely, when the B-sum is 2 or 6. Continuing the count in this
way, the number of pairs .x; y/ for which the A-sum is larger than the B-sum is

1C 3C 3C 3C 3C 6C 6C 6C 6 D 37:

A similar count shows that there are 42 pairs for which B-sum is larger than the
A-sum, and there are two pairs where the sums are equal, namely, when they both
equal 14. This means that A loses to B with probability 42=81 > 1=2 and ties with
probability 2=81. Die A wins with probability only 37=81.
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How can it be that A is more likely than B to win with one roll, but B is more
likely to win with two rolls? Well, why not? The only reason we’d think otherwise
is our unreliable, untrained intuition. (Even the authors were surprised when they
first learned about this, but at least they didn’t lose $1400 to biker dude.) In fact,
the die strength reverses no matter which two die we picked. So for one roll,

A � B � C � A;

but for two rolls,
A � B � C � A;

where we have used the symbols � and � to denote which die is more likely to
result in the larger value.

The weird behavior of the three strange dice above generalizes in a remarkable
way: there are arbitrarily large sets of dice which will beat each other in any desired
pattern according to how many times the dice are rolled.2

16.4 The Birthday Principle

There are 95 students in a class. What is the probability that some birthday is
shared by two people? Comparing 95 students to the 365 possible birthdays, you
might guess the probability lies somewhere around 1=4—but you’d be wrong: the
probability that there will be two people in the class with matching birthdays is
actually more than 0:9999.

To work this out, we’ll assume that the probability that a randomly chosen stu-
dent has a given birthday is 1=d . We’ll also assume that a class is composed of n

randomly and independently selected students. Of course d D 365 and n D 95

in this case, but we’re interested in working things out in general. These random-
ness assumptions are not really true, since more babies are born at certain times
of year, and students’ class selections are typically not independent of each other,
but simplifying in this way gives us a start on analyzing the problem. More impor-
tantly, these assumptions are justifiable in important computer science applications
of birthday matching. For example, birthday matching is a good model for colli-
sions between items randomly inserted into a hash table. So we won’t worry about
things like spring procreation preferences that make January birthdays more com-
mon, or about twins’ preferences to take classes together (or not).

2 TBA - Reference Ron Graham paper.
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16.4.1 Exact Formula for Match Probability
There are dn sequences of n birthdays, and under our assumptions, these are
equally likely. There are d.d � 1/.d � 2/ � � � .d � .n � 1// length n sequences of
distinct birthdays. That means the probability that everyone has a different birthday
is:3

d.d � 1/.d � 2/ � � � .d � .n � 1//

dn

d d � 1 d � 2 d � .n � 1/D
✓
�

◆✓
�

◆✓
� � � (16.4)

d d d d
0 1 2 n 1D 1 � 1 1

�
d

�
d

�
d

◆
� � �
✓

1 �
d

< e0

◆

� �1=d � �2=d � � � �.n�1/=d (since C x)

D e
�
⇣

.

e e e x < e
Pn�1

iD1 i=d
⌘

1

D e� n.n�1/=2d/: (16.5)

For n D 95 and d D 365, the value of (16.5) is less than 1=200; 000, which
means the probability of having some pair of matching birthdays actually is more
than 1 � 1=200; 000 > 0:99999. So it would be pretty astonishing if there were no
pair of students in the class with matching birthdays.

For d  n2=2, the probability of no match turns out to be asymptotically equal
to the upper bound (16.5). For d D n2=2 in particular, the probability of no match
is asymptotically equal to 1=e. This leads to a rule of thumb which is useful in
many contexts in computer science:

The Birthday Principle
If there are d days in a year and

p
2d people in a room, then the probability that

two share a birthday is about 1 � 1=e ⇡ 0:632.

For example, the Birthday Principle says that if you have
p

2 � 365 ⇡ 27 people
in a room, then the probability that two share a birthday is about 0:632. The actual
probability is about 0:626, so the approximation is quite good.

Among other applications, it implies that to use a hash function that maps n

items into a hash table of size d , you can expect many collisions if n2 is more than
3The fact that 1 � x < e�x for all x > 0 follows by truncating the Taylor series e�x D 1 � x

2 3 x
C

x =2ä � x =3äC � � � . The approximation e� ⇡ 1 � x is pretty accurate when x is small.
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a small fraction of d . The Birthday Principle also famously comes into play as the
basis of “birthday attacks” that crack certain cryptographic systems.

16.5 Set Theory and Probability

Let’s abstract what we’ve just done into a general mathematical definition of sample
spaces and probability.

16.5.1 Probability Spaces
Definition 16.5.1. A countable sample space S is a nonempty countable set.4 An
element ! 2 S is called an outcome. A subset of S is called an event.

Definition 16.5.2. A probability function on a sample space S is a total function
Pr W S ! R such that

✏ Pr

A

P
Œ!ç � 0 for all ! 2 S , and

✏ ! Pr2 Œ!çS D 1.

sample space together with a probability function is called a probability space.
For any event E ✓ S , the probability of E is defined to be the sum of the probabil-
ities of the outcomes in E:

PrŒEç WWD
X

PrŒ!ç:

!2E

In the previous examples there were only finitely many possible outcomes, but
we’ll quickly come to examples that have a countably infinite number of outcomes.

The study of probability is closely tied to set theory because any set can be a
sample space and any subset can be an event. General probability theory deals
with uncountable sets like the set of real numbers, but we won’t need these, and
sticking to countable sets lets us define the probability of events using sums instead
of integrals. It also lets us avoid some distracting technical problems in set theory
like the Banach-Tarski “paradox” mentioned in Chapter 7.

16.5.2 Probability Rules from Set Theory
Most of the rules and identities that we have developed for finite sets extend very
naturally to probability.

4Yes, sample spaces can be infinite. If you did not read Chapter 7, don’t worry—countable just
means that you can list the elements of the sample space as !0, !1, !2, . . . .
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An immediate consequence of the definition of event probability is that for dis-
joint events E and F ,

PrŒE [ F ç D PrŒEçC PrŒF ç:

This generalizes to a countable number of events:

Rule 16.5.3 (Sum Rule). If E0; E1; : : : ;

Pr

" [
En

n2N

#
En; : : : are pairwise disjoint events, then

D
X

PrŒEnç:
n2N

The Sum Rule lets us analyze a complicated event by breaking it down into
simpler cases. For example, if the probability that a randomly chosen MIT student
is native to the United States is 60%, to Canada is 5%, and to Mexico is 5%, then
the probability that a random MIT student is native to one of these three countries
is 70%.

Another consequence of the Sum Rule is that PrŒAçC PrŒAç D 1, which follows
because PrŒSç D 1 and S is the union of the disjoint sets A and A. This equation
often comes up in the form:

PrŒAç D 1 � PrŒAç: (Complement Rule)

Sometimes the easiest way to compute the probability of an event is to compute the
probability of its complement and then apply this formula.

Some further basic facts about probability parallel facts about cardinalities of
finite sets. In particular:

PrŒB � Aç D PrŒBç � PrŒA \ Bç, (Difference Rule)
PrŒA [ Bç D PrŒAçC PrŒBç � PrŒA \ Bç, (Inclusion-Exclusion)
PrŒA [ Bç  PrŒAçC PrŒBç, (Boole’s Inequality)
If A ✓ B , then PrŒAç  PrŒBç. (Monotonicity Rule)

The Difference Rule follows from the Sum Rule because B is the union of the
disjoint sets B � A and A \ B . Inclusion-Exclusion then follows from the Sum
and Difference Rules, because A [ B is the union of the disjoint sets A and B �
A. Boole’s inequality is an immediate consequence of Inclusion-Exclusion since
probabilities are nonnegative. Monotonicity follows from the definition of event
probability and the fact that outcome probabilities are nonnegative.

The two-event Inclusion-Exclusion equation above generalizes to any finite set
of events in the same way as the corresponding Inclusion-Exclusion rule for n

sets. Boole’s inequality also generalizes to both finite and countably infinite sets of
events:
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Rule 16.5.4 (Union Bound).

PrŒE1 [ � � � [En [ � � � ç  PrŒE1çC � � �C PrŒEnçC � � � : (16.6)

The Union Bound is useful in many calculations. For example, suppose that Ei is
the event that the i -th critical component among n components in a spacecraft fails.
Then E1[ � � �[En is the event that some critical component fails. If

Pn
iD1 PrŒEi ç

is small, then the Union Bound can provide a reassuringly small upper bound on
this overall probability of critical failure.

16.5.3 Uniform Probability Spaces
Definition 16.5.5. A finite probability space, S , is said to be uniform if PrŒ!ç is the
same for every outcome ! 2 S .

As we saw in the strange dice problem, uniform sample spaces are particularly
easy to work with. That’s because for any event E ✓ S ,

E
PrŒEç

j jD : (16.7)jSj
This means that once we know the cardinality of E and S , we can immediately
obtain PrŒEç. That’s great news because we developed lots of tools for computing
the cardinality of a set in Part III.

For example, suppose that you select five cards at random from a standard deck
of 52 cards. What is the probability of having a full house? Normally, this question
would take some effort to answer. But from the analysis in Section 14.7.2, we know
that

jSj D
 

52

5

!

and

jEj D 13 �
 

4

3

!
� 12 �

 
4

2

!

where E is the event that we have a full house. Since every five-card hand is equally
likely, we can apply equation (16.7) to

52

�
find that

13
PrŒEç

� 12 � 4

D 3

�
�
�4
2

�
�

5

13 � 12 � 4D

�
� 6 � 5 � 4 � 3 � 2 18

52 � 51 50
D� � 49 � 48 12495

1⇡ :
694
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2nd 

st player1

2nd player

1st player
player

Figure 16.10 The tree diagram for the game where players take turns flipping a
fair coin. The first player to flip heads wins.

16.5.4 Infinite Probability Spaces
Infinite probability spaces are fairly common. For example, two players take turns
flipping a fair coin. Whoever flips heads first is declared the winner. What is the
probability that the first player wins? A tree diagram for this problem is shown in
Figure 16.10.

The event that the first player wins contains an infinite number of outcomes, but
we can still sum their probabilities:

1 1 1 1
PrŒfirst player winsç D

2
C

n1

n

X
8
C

32
C

128
C � � �

1
1

D
2 D0

✓
4

◆

1D
2

✓
1 2

1
D :� 1=4

◆
3

Similarly, we can compute the probability that the second player wins:

1 1 1 1 1
PrŒsecond player winsç D

4
C

16
C

64
C

256
C � � � D :

3

In this case, the sample space is the infinite set

S WWD fTnH j n 2 N g;
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where Tn stands for a length n string of T’s. The probability function is

PrŒTn 1
Hç WWD :

2nC1

To verify that this is a probability space, we just have to check that all the prob-
abilities are nonnegative and that they sum to 1. The given probabilities are all
nonnegative, and applying the formula for the sum of a geometric series, we find
that X

n
X 1

PrŒT Hç
n

D
2n

2N n2N
C1
D 1:

Notice that this model does not have an outcome corresponding to the possi-
bility that both players keep flipping tails forever. (In the diagram, flipping for-
ever corresponds to following the infinite path in the tree without ever reaching
a leaf/outcome.) If leaving this possibility out of the model bothers you, you’re
welcome to fix it by adding another outcome, !forever, to indicate that that’s what
happened. Of course since the probabililities of the other outcomes already sum to
1, you have to define the probability of !forever to be 0. Now outcomes with prob-
ability zero will have no impact on our calculations, so there’s no harm in adding
it in if it makes you happier. On the other hand, in countable probability spaces
it isn’t necessary to have outcomes with probability zero, and we will generally
ignore them.
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