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19 Deviation from the Mean
In the previous chapter, we took it for granted that expectation is useful and de-
veloped a bunch of techniques for calculating expected values. But why should we
care about this value? After all, a random variable may never take a value anywhere
near its expectation.

The most important reason to care about the mean value comes from its con-
nection to estimation by sampling. For example, suppose we want to estimate the
average age, income, family size, or other measure of a population. To do this,
we determine a random process for selecting people—say, throwing darts at cen-
sus lists. This process makes the selected person’s age, income, and so on into a
random variable whose mean equals the actual average age or income of the pop-
ulation. So, we can select a random sample of people and calculate the average
of people in the sample to estimate the true average in the whole population. But
when we make an estimate by repeated sampling, we need to know how much con-
fidence we should have that our estimate is OK, and how large a sample is needed
to reach a given confidence level. The issue is fundamental to all experimental
science. Because of random errors—noise—repeated measurements of the same
quantity rarely come out exactly the same. Determining how much confidence
to put in experimental measurements is a fundamental and universal scientific is-
sue. Technically, judging sampling or measurement accuracy reduces to finding the
probability that an estimate deviates by a given amount from its expected value.

Another aspect of this issue comes up in engineering. When designing a sea wall,
you need to know how strong to make it to withstand tsunamis for, say, at least a
century. If you’re assembling a computer network, you might need to know how
many component failures it should tolerate to likely operate without maintenance
for at least a month. If your business is insurance, you need to know how large a
financial reserve to maintain to be nearly certain of paying benefits for, say, the next
three decades. Technically, such questions come down to finding the probability of
extreme deviations from the mean.

This issue of deviation from the mean is the focus of this chapter.

19.1 Markov’s Theorem

Markov’s theorem gives a generally coarse estimate of the probability that a random
variable takes a value much larger than its mean. It is an almost trivial result by
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itself, but it actually leads fairly directly to much stronger results.
The idea behind Markov’s Theorem can be explained by considering the quantity

known as intelligence quotient, IQ, which remains in wide use despite doubts about
its legitimacy. IQ was devised so that its average measurement would be 100. This
immediately implies that at most 1/3 of the population can have an IQ of 300 or
more, because if more than a third had an IQ of 300, then the average would have to
be more than .1=3/ � 300 D 100. So, the probability that a randomly chosen person
has an IQ of 300 or more is at most 1/3. By the same logic, we can also conclude
that at most 2/3 of the population can have an IQ of 150 or more.

Of course, these are not very strong conclusions. No IQ of over 300 has ever
been recorded; and while many IQ’s of over 150 have been recorded, the fraction
of the population that actually has an IQ that high is very much smaller than 2/3.
But though these conclusions are weak, we reached them using just the fact that the
average IQ is 100—along with another fact we took for granted, that IQ is never
negative. Using only these facts, we can’t derive smaller fractions, because there
are nonnegative random variables with mean 100 that achieve these fractions. For
example, if we choose a random variable equal to 300 with probability 1/3 and 0
with probability 2/3, then its mean is 100, and the probability of a value of 300 or
more really is 1/3.

Theorem 19.1.1 (Markov’s Theorem). If R is a nonnegative random variable, then
for all x > 0

ExŒRç
PrŒR � xç  : (19.1)

x
Proof. Let y vary over the range of R. Then for any x > 0

ExŒRç WWD
X

y PrŒR
y

D yç

�
X

y PrŒR D yç �
X

x PrŒR D yç D x
X

PrŒR ç
x

D y
y�x y� y�x

D x PrŒR � xç; (19.2)

where the first inequality follows from the fact that R � 0.
Dividing the first and last expressions in (19.2) by x gives the desired result. ⌅

Our focus is deviation from the mean, so it’s useful to rephrase Markov’s Theo-
rem this way:

Corollary 19.1.2. If R is a nonnegative random variable, then for all c � 1

1
PrŒR � c � ExŒRç ç  : (19.3)

c
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This Corollary follows immediately from Markov’s Theorem(19.1.1) by letting
x be c � ExŒRç.

19.1.1 Applying Markov’s Theorem
Let’s go back to the Hat-Check problem of Section 18.5.2. Now we ask what
the probability is that x or more men get the right hat, this is, what the value of
PrŒG � xç is.

We can compute an upper bound with Markov’s Theorem. Since we know
ExŒGç D 1, Markov’s Theorem implies

ExŒGç 1
PrŒG � xç 

x
D :

x

For example, there is no better than a 20% chance that 5 men get the right hat,
regardless of the number of people at the dinner party.

The Chinese Appetizer problem is similar to the Hat-Check problem. In this
case, n people are eating different appetizers arranged on a circular, rotating Chi-
nese banquet tray. Someone then spins the tray so that each person receives a
random appetizer. What is the probability that everyone gets the same appetizer as
before?

There are n equally likely orientations for the tray after it stops spinning. Ev-
eryone gets the right appetizer in just one of these n orientations. Therefore, the
correct answer is 1=n.

But what probability do we get from Markov’s Theorem? Let the random vari-
able, R, be the number of people that get the right appetizer. Then of course
ExŒRç D 1, so applying Markov’s Theorem, we find:

ExŒRç 1
PrŒR � nç 

n
D :

n

So for the Chinese appetizer problem, Markov’s Theorem is precisely right!
Unfortunately, Markov’s Theorem is not always so accurate. For example, it

gives the same 1=n upper limit for the probability that everyone gets their own hat
back in the Hat-Check problem, where the probability is actually 1=.nä/. So for
Hat-Check, Markov’s Theorem gives a probability bound that is way too large.

19.1.2 Markov’s Theorem for Bounded Variables
Suppose we learn that the average IQ among MIT students is 150 (which is not
true, by the way). What can we say about the probability that an MIT student has
an IQ of more than 200? Markov’s theorem immediately tells us that no more than
150=200 or 3=4 of the students can have such a high IQ. Here, we simply applied
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Markov’s Theorem to the random variable, R, equal to the IQ of a random MIT
student to conclude:

ExŒRç 150 3
PrŒR > 200ç 

200
D

200
D :

4

But let’s observe an additional fact (which may be true): no MIT student has an
IQ less than 100. This means that if we let T WWD R � 100, then T is nonnegative
and ExŒT ç D 50, so we can apply Markov’s Theorem to T and conclude:

ExŒT ç 50 1
PrŒR > 200ç D PrŒT > 100ç 

100
D

100
D :

2

So only half, not 3/4, of the students can be as amazing as they think they are. A
bit of a relief!

In fact, we can get better bounds applying Markov’s Theorem to R � b instead
of R for any lower bound b on R (see Problem 19.3). Similarly, if we have any
upper bound, u, on a random variable, S , then u�S will be a nonnegative random
variable, and applying Markov’s Theorem to u � S will allow us to bound the
probability that S is much less than its expectation.

19.2 Chebyshev’s Theorem

We’ve seen that Markov’s Theorem can give a better bound when applied to R � b

rather than R. More generally, a good trick for getting stronger bounds on a ran-
dom variable R out of Markov’s Theorem is to apply the theorem to some cleverly
chosen function of R. Choosing functions that are powers of the absolute value of
R turns out to be especially useful. In particular, since jRjz is nonnegative for any
real number z, Markov’s inequality also applies to the event Œ jRjz � xzç. But for
positive x; z > 0 this event is equivalent to the event Œ jRj � xç for , so we have:

Lemma 19.2.1. For any random variable R and positive real numbers x; z,

Ex zŒ R
PrŒjRj � xç

j j ç
 :

xz

Rephrasing (19.2.1) in terms of jR � ExŒRç j, the random variable that measures
R’s deviation from its mean, we get

ExŒ.R ExŒRç/zç
PrŒ jR � ExŒRç x

�j � ç  : (19.4)
xz

The case when z D 2 turns out to be so important that the numerator of the right
hand side of (19.4) has been given a name:
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Definition 19.2.2. The variance, VarŒRç, of a random variable, R, is:

VarŒRç WWD Ex
⇥
.R � ExŒRç/2

⇤
:

Variance is also known as mean square deviation.
The restatement of (19.4) for z D 2 is known as Chebyshev’s Theorem1

Theorem 19.2.3 (Chebyshev). Let R be a random variable and x 2 RC. Then

VarŒRç
PrŒjR � ExŒRç j � xç  :

x2

The expression ExŒ.R � ExŒRç/2ç for variance is a bit cryptic; the best approach
is to work through it from the inside out. The innermost expression, R � ExŒRç, is
precisely the deviation of R above its mean. Squaring this, we obtain, .R�ExŒRç/2.
This is a random variable that is near 0 when R is close to the mean and is a large
positive number when R deviates far above or below the mean. So if R is always
close to the mean, then the variance will be small. If R is often far from the mean,
then the variance will be large.

19.2.1 Variance in Two Gambling Games
The relevance of variance is apparent when we compare the following two gam-
bling games.

Game A: We win $2 with probability 2=3 and lose $1 with probability 1=3.
Game B: We win $1002 with probability 2=3 and lose $2001 with probability

1=3.
Which game is better financially? We have the same probability, 2/3, of winning

each game, but that does not tell the whole story. What about the expected return for
each game? Let random variables A and B be the payoffs for the two games. For
example, A is 2 with probability 2/3 and -1 with probability 1/3. We can compute
the expected payoff for each game as follows:

2 1
ExŒAç D 2 � .

3
C �1/ �

3
D 1;

2 1
ExŒBç D 1002 �

3
C .�2001/ �

3
D 1:

The expected payoff is the same for both games, but the games are very different.
This difference is not apparent in their expected value, but is captured by variance.

1There are Chebyshev Theorems in several other disciplines, but Theorem 19.2.3 is the only one
we’ll refer to.
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We can compute the VarŒAç by working “from the inside out” as follows:

A � ExŒAç D
⇢

1 with probability 2
3

�2 with probability 1
3

1 with probability 2

.A � ExŒAç/2 D
⇢

3
4 with probability 1

3

ExŒ.A � ExŒAç/2 2 1
ç D 1 �

3
C 4 �

3
VarŒAç D 2:

Similarly, we have for VarŒBç:

1001 with probability 2

B � ExŒBç D
⇢

3
�2002 with probability 1

3
2

.B � ŒBç/2 D
⇢

1; 002; 001 with probabilityEx 3
4; 008; 004 with probability 1

3

ExŒ.B � ExŒBç/2 2 1
ç D 1; 002; 001 � C 4; 008; 004

3
�

3
VarŒBç D 2; 004; 002:

The variance of Game A is 2 and the variance of Game B is more than two
million! Intuitively, this means that the payoff in Game A is usually close to the
expected value of $1, but the payoff in Game B can deviate very far from this
expected value.

High variance is often associated with high risk. For example, in ten rounds of
Game A, we expect to make $10, but could conceivably lose $10 instead. On the
other hand, in ten rounds of game B, we also expect to make $10, but could actually
lose more than $20,000!

19.2.2 Standard Deviation
In Game B above, the deviation from the mean is 1001 in one outcome and -2002
in the other. But the variance is a whopping 2,004,002. The happens because the
“units” of variance are wrong: if the random variable is in dollars, then the expec-
tation is also in dollars, but the variance is in square dollars. For this reason, people
often describe random variables using standard deviation instead of variance.

Definition 19.2.4. The standard deviation, �R, of a random variable, R, is the
square root of the variance:

�R WWD
p

VarŒRç D
q

ExŒ.R � ExŒRç/2ç:
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mean

Figure 19.1 The standard deviation of a distribution indicates how wide the
“main part” of it is.

So the standard deviation is the square root of the mean square deviation, or
the root mean square for short. It has the same units—dollars in our example—as
the original random variable and as the mean. Intuitively, it measures the average
deviation from the mean, since we can think of the square root on the outside as
canceling the square on the inside.

Example 19.2.5. The standard deviation of the payoff in Game B is:

�B D

The random variable B actually

p
VarŒBç D

p
2; 004; 002 ⇡ 1416:

deviates from the mean by either positive 1001
or negative 2002, so the standard deviation of 1416 describes this situation more
closely than the value in the millions of the variance.

For bell-shaped distributions like the one illustrated in Figure 19.1, the standard
deviation measures the “width” of the interval in which values are most likely to
fall. This can be more clearly explained by rephrasing Chebyshev’s Theorem in
terms of standard deviation, which we can do by substituting x D c�R in (19.1):

Corollary 19.2.6. Let R be a random variable, and let c be a positive real number.

1
PrŒjR � ExŒRçj � c�Rç  :

c2
(19.5)

Now we see explicitly how the “likely” values of R are clustered in an O.�R/-
sized region around ExŒRç, confirming that the standard deviation measures how
spread out the distribution of R is around its mean.



“mcs” — 2015/5/18 — 1:43 — page 796 — #804

796 Chapter 19 Deviation from the Mean

The IQ Example

Suppose that, in addition to the national average IQ being 100, we also know the
standard deviation of IQ’s is 10. How rare is an IQ of 300 or more?

Let the random variable, R, be the IQ of a random person. So ExŒRç D 100,
�R D 10, and R is nonnegative. We want to compute PrŒR � 300ç.

We have already seen that Markov’s Theorem 19.1.1 gives a coarse bound, namely,

1
PrŒR � 300ç  :

3

Now we apply Chebyshev’s Theorem to the same problem:

VarŒRç 102 1
PrŒR � 300ç D PrŒjR � 100j � 200ç 

2002
D

2002
D :

400

So Chebyshev’s Theorem implies that at most one person in four hundred has
an IQ of 300 or more. We have gotten a much tighter bound using additional
information—the variance of R—than we could get knowing only the expectation.

19.3 Properties of Variance

Variance is the average of the square of the distance from the mean. For this rea-
son, variance is sometimes called the “mean square deviation.” Then we take its
square root to get the standard deviation—which in turn is called “root mean square
deviation.”

But why bother squaring? Why not study the actual distance from the mean,
namely, the absolute value of R � ExŒRç, instead of its root mean square? The
answer is that variance and standard deviation have useful properties that make
them much more important in probability theory than average absolute deviation.
In this section, we’ll describe some of those properties. In the next section, we’ll
see why these properties are important.

19.3.1 A Formula for Variance
Applying linearity of expectation to the formula for variance yields a convenient
alternative formula.

Lemma 19.3.1.
VarŒRç D ExŒR2ç � Ex2ŒRç;

for any random variable, R.
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Here we use the notation Ex2ŒRç as shorthand for .ExŒRç/2.

Proof. Let � D ExŒRç. Then

VarŒRç D ExŒ.R � ExŒRç/2ç (Def 19.2.2 of variance)

D ExŒ.R � �/2ç (def of �)

D ExŒR2 � 2�RC �2ç

D ExŒR2ç � 2� ExŒRç
2 2 2

C �2 (linearity of expectation)

D ExŒR ç � 2� C � (def of �)

D ExŒR2ç �2

D ExŒR2

�
ç � Ex2ŒRç: (def of �)

⌅

A simple and very useful formula for the variance of an indicator variable is an
immediate consequence.

Corollary 19.3.2. If B is a Bernoulli variable where p WWD PrŒB D 1ç, then

VarŒBç D p � 2p D p.1 � p/: (19.6)

Proof. By Lemma 18.4.2, ExŒBç D p. But B only takes values 0 and 1, so B2 D B

and equation (19.6) follows immediately from Lemma 19.3.1. ⌅

19.3.2 Variance of Time to Failure
According to Section 18.4.6, the mean time to failure is 1=p for a process that fails
during any given hour with probability p. What about the variance?

By Lemma 19.3.1,
VarŒC ç D ExŒC 2ç � .1=p/2 (19.7)

so all we need is a formula for ExŒC 2ç.
Reasoning about C using conditional expectation worked nicely in Section 18.4.6

to find mean time to failure, and a similar approach works for C 2. Namely, the ex-
pected value of C 2 is the probability, p, of failure in the first hour times 12, plus
the probability, .1 � p/, of non-failure in the first hour times the expected value of



“mcs” — 2015/5/18 — 1:43 — page 798 — #806

798 Chapter 19 Deviation from the Mean

.C C 1/2. So

ExŒC 2ç D p � 12 C .1 � p/ ExŒ.C C 1/2ç

2D p C .1 � p/

✓
ExŒC 2çC

p
C 1

◆

D p C .1 � p/ ExŒC 2 2
çC .1 � p/

✓
p
C 1

◆
; so

p ExŒC 2ç D p C .1 � p/

✓
2

1
p
C

p2

◆

C .1 � p/.2C p/D and
p

ExŒC 2 2
ç

� pD
p2

Combining this with (19.7) proves

Lemma 19.3.3. If failures occur with probability p independently at each step, and
C is the number of steps until the first failure2, then

1 p
VarŒC ç

�D :
p2

(19.8)

19.3.3 Dealing with Constants
It helps to know how to calculate the variance of aRC b:

Theorem 19.3.4. [Square Multiple Rule for Variance] Let R be a random variable
and a a constant. Then

VarŒaRç D a2 VarŒRç: (19.9)

Proof. Beginning with the definition of variance and repeatedly applying linearity
of expectation, we have:

VarŒaRç WWD ExŒ.aR � ExŒaRç/2ç

D ExŒ.aR/2 � 2aR ExŒaRçC Ex2ŒaRçç

D ExŒ.aR/2ç ExŒ2aR ExŒaRçç Ex2ŒaRç

D a2 ExŒR2

� C
ç � 2 ExŒaRç ExŒaRçC Ex2ŒaRç

D a2 Ex� ŒR2ç
2

� a2 Ex2ŒRç

D a2 ExŒR ç � Ex2ŒRç

D a2 VarŒRç

�

(Lemma 19.3.1)
2That is, C has the geometric distribution with parameter p according to Definition 18.4.6.
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⌅

It’s even simpler to prove that adding a constant does not change the variance, as
the reader can verify:

Theorem 19.3.5. Let R be a random variable, and b a constant. Then

VarŒRC bç D VarŒRç: (19.10)

Recalling that the standard deviation is the square root of variance, this implies
that the standard deviation of aR C b is simply jaj times the standard deviation of
R:

Corollary 19.3.6.
�.aRCb/ D jaj �R:

19.3.4 Variance of a Sum
In general, the variance of a sum is not equal to the sum of the variances, but
variances do add for independent variables. In fact, mutual independence is not
necessary: pairwise independence will do. This is useful to know because there are
some important situations, such as Birthday Matching in Section 16.4, that involve
variables that are pairwise independent but not mutually independent.

Theorem 19.3.7. If R and S are independent random variables, then

VarŒRC S ç D VarŒRçC VarŒS ç: (19.11)

Proof. We may assume that ExŒRç D 0, since we could always replace R by
R � ExŒRç in equation (19.11); likewise for S . This substitution preserves the
independence of the variables, and by Theorem 19.3.5, does not change the vari-
ances.

But for any variable T with expectation zero, we have VarŒT ç D ExŒT 2ç, so we
need only prove

ExŒ.RC S/2ç D ExŒR2çC ExŒS2ç: (19.12)

But (19.12) follows from linearity of expectation and the fact that

ExŒRS ç D ExŒRç ExŒS ç (19.13)
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since R and S are independent:

ExŒ.RC S/2ç D ExŒR2 C 2RS C S2ç

D ExŒR2çC 2 ExŒRS çC ExŒS2ç

D ExŒR2çC 2 ExŒRç ExŒS çC ExŒS2ç (by (19.13))

D ExŒR2ç
2

C 2 � 0 � 0C ExŒS2ç

D ExŒR çC ExŒS2ç

⌅

It’s easy to see that additivity of variance does not generally hold for variables
that are not independent. For example, if R D S , then equation (19.11) becomes
VarŒRCRç D VarŒRçCVarŒRç. By the Square Multiple Rule, Theorem 19.3.4, this
holds iff 4 VarŒRç D 2 VarŒRç, which implies that VarŒRç D 0. So equation (19.11)
fails when R D S and R has nonzero variance.

The proof of Theorem 19.3.7 carries over to the sum of any finite number of
variables. So we have:

Theorem 19.3.8. [Pairwise Independent Additivity of Variance] If R1; R2; : : : ; Rn

are pairwise independent random variables, then

VarŒR1 CR2 C � � �CRnç D VarŒR1çC VarŒR2çC � � �C VarŒRnç: (19.14)

Now we have a simple way of computing the variance of a variable, J , that has
an n.n; p/-binomial distribution. We know that J D k areD1 Ik where the Ik

mutually independent indicator variables with PrŒIk D 1ç D p. The variance of
each Ik is p.1 � p/ by Corollary 19.3.2, so by linearity

P

of variance, we have

Lemma 19.3.9 (Variance of the Binomial Distribution). If J has the .n; p/-binomial
distribution, then

VarŒJ ç D n VarŒIkç D np.1 � p/: (19.15)
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