6.045: Automata, Computability, and Complexity
Or, Great Ideas in Theoretical Computer Science Spring, 2010

Class 3
Nancy Lynch

Today

- Finite Automata (FAs)
- Our third machine model, after circuits and decision trees.
- Designed to:
- Accept some strings of symbols.
- Recognize a language, which is the set of strings it accepts.
- FA takes as its input a string of any length.
- One machine for all lengths.
- Circuits and decision trees use a different machine for each length.
- Today's topics:
- Finite Automata and the languages they recognize
- Examples
- Operations on languages
- Closure of FA languages under various operations
- Nondeterministic FAs
- Reading: Sipser, Section 1.1.
- Next: Sections 1.2, 1.3.

Finite Automata and the languages they recognize

Example 1

- An FA diagram, machine M

- Conventions:

Start state

Accept state

Transition from a to b on input symbol 1. Allow self-loops

Example 1

- Example computation:
- Input word w: 1
- States: a b a b c a b c d d
- We say that M accepts w, since w leads to d, an accepting state.

In general...

- A FA M accepts a word w if w causes M to follow a path from the start state to an accept state.
- Some terminology and notation:
- Finite alphabet of symbols, usually called Σ.
- In Example 1 (and often), $\Sigma=\{0,1\}$.
- String (word) over Σ : Finite sequence of symbols from Σ.
- Length of w, | w |
$-\varepsilon$, placeholder symbol for the empty string, $|\varepsilon|=0$
- Σ^{\star}, the set of all finite strings of symbols in Σ
- Concatenation of strings w and x , written $\mathrm{w} \cdot \mathrm{x}$ or wx .
$-L(M)$, language recognized by M:
$\{w \mid w$ is accepted by M \}.
- What is $\mathrm{L}(\mathrm{M})$ for Example 1?

Example 1

- What is $L(M)$ for Example 1?
- $\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 111 as a substring $\}$
- Note: Substring refers to consecutive symbols.

Formal Definition of an FA

- An FA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, F$), where:
$-Q$ is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$ is the transition function,

The arguments of δ The result is a state. are a state and an alphabet symbol.
$-q_{0} \in Q$, is the start state, and
$-F \subseteq Q$ is the set of accepting, or final states.

Example 1

- What is the 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$)?
- $Q=\{a, b, c, d\}$
- $\Sigma=\{0,1\}$
- δ is given by the state diagram, or alternatively, by a table:
- $\mathrm{q}_{0}=\mathrm{a}$
- $F=\{d\}$

	0	1
a	a	b
b	a	c
c	a	d
d	d	d

Formal definition of computation

- Extend the definition of δ to input strings and states: $\delta^{\star}: \mathrm{Q} \times \Sigma^{\star} \rightarrow \mathrm{Q}$, state and string yield a state $\delta^{*}(\mathrm{q}, \mathrm{w})=$ state that is reached by starting at q and following w.
- Defined recursively:

$$
\begin{aligned}
& \delta^{\star}(\mathrm{q}, \varepsilon)=\mathrm{q} \\
& \delta^{\star}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{\star}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right) \\
& \text { string symbol }
\end{aligned}
$$

- Or iteratively, compute $\delta^{\star}\left(\mathrm{q}, \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{k}}\right)$ by:

$$
\begin{aligned}
& s:=q \\
& \text { for } i=1 \text { to } k \text { do } s:=\delta\left(s, a_{i}\right)
\end{aligned}
$$

Formal definition of computation

- String w is accepted if $\delta^{\star}\left(q_{0}, w\right) \in F$, that is, w leads from the start state to an accepting state.
- String w is rejected if it isn't accepted.
- A language is any set of strings over some alphabet.
- $L(M)$, language recognized by finite automaton $\mathrm{M}=\{\mathrm{w} \mid \mathrm{w}$ is accepted by M$\}$.
- A language is regular, or FA-recognizable, if it is recognized by some finite automaton.

Examples of Finite Automata

Example 2

- Design an FA M with $L(M)=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains 101 as a substring \}.

- Failure from state b causes the machine to remain in state b.

Example 3

- $L=\left\{w \in\{0,1\}^{*} \mid w\right.$ doesn't contain either 00 or 11 as a substring \}.

- State d is a trap state = a nonaccepting state that you can't leave.
- Sometimes we'll omit some arrows; by convention, they go to a trap state.

Example 4

- $\mathrm{L}=\{\mathrm{w} \mid$ all nonempty blocks of 1 s in w have odd length $\}$.
- E.g., ε, or 100111000011111 , or any number of 0s.
- Initial Os don't matter, so start with:

- Then 1 also leads to an accepting state, but it should be a different one, to "remember" that the string ends in one 1.

Example 4

- $L=\{w \mid$ all nonempty blocks of 1 s in w have odd length $\}$.
- From b:
- 0 can return to a, which can represent either ε, or any string that is OK so far and ends with 0 .
- 1 should go to a new nonaccepting
 state, meaning "the string ends with two 1s".

- Note: c isn't a trap state---we can accept some extensions.

Example 4

- $L=\{\mathrm{w} \mid$ all nonempty blocks of 1 s in w have odd length $\}$.

- 1 can lead back to b, since future acceptance decisions are the same if the string so far ends with any odd number of 1 s .
- Reinterpret b as meaning "ends with an odd number of 1 s ".
- Reinterpret c as "ends with an even number of 1 s ".
- 0 means we must reject the current string and all extensions.

Example 4

- $L=\{w \mid$ all nonempty blocks of 1 s in w have odd length $\}$.

- Meanings of states (more precisely):
a: Either ε, or contains no bad block (even block of 1 s followed by 0) so far and ends with 0 .
b: No bad block so far, and ends with odd number of 1 s .
c: No bad block so far, and ends with even number of 1 s .
d: Contains a bad block.

Example 5

- $L=E Q=\{w \mid w$ contains an equal number of $0 s$ and 1s \}.
- No FA recognizes this language.
- Idea (not a proof):
- Machine must "remember" how many 0s and 1s it has seen, or at least the difference between these numbers.
- Since these numbers (and the difference) could be anything, there can't be enough states to keep track.
- So the machine will sometimes get confused and give a wrong answer.
- We'll turn this into an actual proof next week.

Language Operations

Language operations

- Operations that can be used to construct languages from other languages.
- Recall: A language is any set of strings.
- Since languages are sets, we can use the usual set operations:
- Union, $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
- Intersection, $L_{1} \cap L_{2}$
- Complement, Lc
- Set difference, $L_{1}-L_{2}$
- We also have new operations defined especially for sets of strings:
- Concatenation, $L_{1} \circ L_{2}$ or just $L_{1} L_{2}$
- Star, L*

Concatenation

- $\mathrm{L}_{1} \circ \mathrm{~L}_{2}=\left\{x \mathrm{y} \mid \mathrm{x} \in \mathrm{L}_{1}\right.$ and $\left.\mathrm{y} \in \mathrm{L}_{2}\right\}$

- Pick one string from each language and concatenate them.
- Example:
$\Sigma=\{0,1\}, L_{1}=\{0,00\}, L_{2}=\{01,001\}$
$\mathrm{L}_{1} \circ \mathrm{~L}_{2}=\{001,0001,00001\}$
- Notes:
$\left|L_{1} \circ L_{2}\right| \leq\left|L_{1}\right| \times\left|L_{2}\right|$, not necessarily equal.
$L \circ L$ does not mean $\{x x \mid x \in L\}$, but rather, $\{x y \mid x$ and y are both in L\}.

Concatenation

- $\mathrm{L}_{1} \circ \mathrm{~L}_{2}=\left\{x \mathrm{y} \mid \mathrm{x} \in \mathrm{L}_{1}\right.$ and $\left.\mathrm{y} \in \mathrm{L}_{2}\right\}$
- Example:

$$
\begin{aligned}
& \Sigma=\{0,1\}, L_{1}=\{0,00\}, L_{2}=\{01,001\} \\
& L_{1} \circ L_{2}=\{001,0001,00001\} \\
& L_{2} \circ L_{2}=\{0101,01001,00101,001001\}
\end{aligned}
$$

- Example: $\varnothing \circ \mathrm{L}$

$$
\{x y \mid x \in \varnothing \text { and } y \in L\}=\varnothing
$$

- Example: $\{\varepsilon\} \circ \mathrm{L}$
$\{x y \mid x \in\{\varepsilon\}$ and $y \in L\}=L$

Concatenation

- $\mathrm{L}_{1} \circ \mathrm{~L}_{2}=\left\{\mathrm{xy} \mid \mathrm{x} \in \mathrm{L}_{1}\right.$ and $\left.\mathrm{y} \in \mathrm{L}_{2}\right\}$
- Write $\mathrm{L} \circ \mathrm{L}$ as L^{2},
$L \circ L \circ \ldots \circ L$ as L^{n}, which is $\left\{x_{1} x_{2} \ldots x_{n} \mid\right.$ all x^{\prime} s are in $\left.L\right\}$ n of them
- Example: L = \{0, 11$\}$
$L^{3}=\{000,0011,0110,01111,1100,11011,11110,111111\}$
- Example: $L=\{0,00\}$
$L^{3}=\{000,0000,00000,000000\}$
- Boundary cases:
$L^{1}=\mathrm{L}$
Define $L^{0}=\{\varepsilon\}$, for every L.
- Implies that $L^{0} L^{n}=\{\varepsilon\} L^{n}=L^{n}$.
- Special case of general rule $L^{a} L^{b}=L^{a+b}$.

The Star Operation

- $L^{*}=\left\{x \mid x=y_{1} y_{2} \ldots y_{k}\right.$ for some $k \geq 0$, where every y is in $L\}$
$=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$
- Note: ε is in L^{*} for every L, since it's in L^{0}.
- Example: What is \varnothing^{*} ?
- Apply the definition:

$$
\varnothing^{*}=\varnothing^{0} \cup \varnothing^{1} \cup \varnothing^{2} \cup \ldots
$$

The rest of these are just \varnothing.

This is $\{\varepsilon\}$, by the convention that $L^{0}=\{\varepsilon\}$.

$$
=\{\varepsilon\} .
$$

The Star Operation

- $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots$
- Example: What is $\{$ a \}* ?
- Apply the definition:

$$
\begin{aligned}
\{a\}^{\star} & =\{a\}^{0} \cup\{a\}^{1} \cup\{a\}^{2} \cup \ldots \\
& =\{\varepsilon\} \cup\{a\} \cup\{a a\} \cup \ldots \\
& =\{\varepsilon, a, a a, a a a, \ldots\}
\end{aligned}
$$

- Abbreviate this to just a^{*}.
- Note this is not just one string, but a set of strings---any number of a's.

The Star Operation

- $L^{*}=L^{0} \cup L^{1} \cup L^{2}$
- Example: What is Σ^{*} ?
- We've already defined this to be the set of all finite strings over Σ.
- But now it has a new formal definition:

$$
\begin{aligned}
\Sigma * & =\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots \\
=\{\varepsilon\} & \cup\{\text { strings of length } 1 \text { over } \Sigma\} \\
& \cup\{\text { strings of length } 2 \text { over } \Sigma\} \\
& \cup \ldots \\
= & \{\text { all finite strings over } \Sigma\}
\end{aligned}
$$

- Consistent.

Summary: Language Operations

- Set operations: Union, intersection, complement, set difference
- New language operations: Concatenation, star
- Regular operations:
- Of these six operations, we identify three as regular operations: union, concatenation, star.
- We'll revisit these next time, when we define regular expressions.

Closure of regular (FArecognizable) languages under all six operations

Closure under operations

- The set of FA-recognizable languages is closed under all six operations (union, intersection, complement, set difference, concatenation, star).
- This means: If we start with FA-recognizable languages and apply any of these operations, we get another FArecognizable language (for a different FA).
- Theorem 1: FA-recognizable languages are closed under complement.
- Proof:
- Start with a language L_{1} over alphabet Σ, recognized by some FA, M_{1}.
- Produce another FA, M_{2}, with $\mathrm{L}\left(\mathrm{M}_{2}\right)=\Sigma^{\star}-\mathrm{L}\left(\mathrm{M}_{1}\right)$.
- Just interchange accepting and non-accepting states.

Closure under complement

- Theorem 1: FA-recognizable languages are closed under complement.
- Proof: Interchange accepting and non-accepting states.
- Example: FA for $\{w \mid w$ does not contain 111$\}$
- Start with FA for $\{w \mid w$ contains 111$\}$:

Closure under complement

- Theorem 1: FA-recognizable languages are closed under complement.
- Proof: Interchange accepting and non-accepting states.
- Example: FA for $\{w \mid w$ does not contain 111 \}
- Interchange accepting and non-accepting states:

Closure under intersection

- Theorem 2: FA-recognizable languages are closed under intersection.
- Proof:
- Start with FAs M_{1} and M_{2} for the same alphabet Σ.
- Get another FA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
- Idea: Run M_{1} and M_{2} "in parallel" on the same input. If both reach accepting states, accept.
- Example:
- $\mathrm{L}\left(\mathrm{M}_{1}\right)$: Contains substring 01.
- $\mathrm{L}\left(\mathrm{M}_{2}\right)$: Odd number of 1 s .
- $\mathrm{L}\left(\mathrm{M}_{3}\right)$: Contains 01 and has an odd number of 1s.

Closure under intersection

- Example:
M_{1} : Substring 01

M_{2} : Odd number of 1 s

Closure under intersection, general rule

- Assume:

$$
\begin{aligned}
& -M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right) \\
& -M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)
\end{aligned}
$$

- Define $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, q_{03}, F_{3}\right)$, where $-Q_{3}=Q_{1} \times Q_{2}$
- Cartesian product, $\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{Q}_{1}\right.$ and $\left.\mathrm{q}_{2} \in \mathrm{Q}_{2}\right\}$
$-\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
$-q_{03}=\left(q_{01}, q_{02}\right)$
$-F_{3}=F_{1} \times F_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ and $\left.q_{2} \in F_{2}\right\}$

Closure under union

- Theorem 3: FA-recognizable languages are closed under union.
- Proof:
- Similar to intersection.
- Start with FAs M_{1} and M_{2} for the same alphabet Σ.
- Get another FA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \cup L\left(M_{2}\right)$.
- Idea: Run M_{1} and M_{2} "in parallel" on the same input. If either reaches an accepting state, accept.
- Example:
- $\mathrm{L}\left(\mathrm{M}_{1}\right)$: Contains substring 01.
- $\mathrm{L}\left(\mathrm{M}_{2}\right)$: Odd number of 1 s .
- $L\left(M_{3}\right)$: Contains 01 or has an odd number of 1s.

Closure under union

- Example:
M_{1} : Substring 01

M_{2} : Odd number of 1 s

Closure under union, general rule

- Assume:

$$
\begin{aligned}
& -M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right) \\
& -M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right)
\end{aligned}
$$

- Define $M_{3}=\left(Q_{3}, \Sigma, \delta_{3}, \mathrm{q}_{03}, \mathrm{~F}_{3}\right)$, where $-Q_{3}=Q_{1} \times Q_{2}$
- Cartesian product, $\left\{\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right) \mid \mathrm{q}_{1} \in \mathrm{Q}_{1}\right.$ and $\left.\mathrm{q}_{2} \in \mathrm{Q}_{2}\right\}$
$-\delta_{3}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
$-q_{03}=\left(q_{01}, q_{02}\right)$
$-F_{3}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in F_{1}\right.$ or $\left.q_{2} \in F_{2}\right\}$

Closure under set difference

- Theorem 4: FA-recognizable languages are closed under set difference.
- Proof:
- Similar proof to those for union and intersection.
- Alternatively, since $L_{1}-L_{2}$ is the same as $L_{1} \cap\left(L_{2}\right)^{c}$, we can just apply Theorems 2 and 3.

Closure under concatenation

- Theorem 5: FA-recognizable languages are closed under concatenation.
- Proof:
- Start with FAs M_{1} and M_{2} for the same alphabet Σ.
- Get another FA, M_{3}, with $L\left(M_{3}\right)=L\left(M_{1}\right) \circ L\left(M_{2}\right)$, which is $\left\{x_{1} x_{2} \mid x_{1} \in L\left(M_{1}\right)\right.$ and $\left.x_{2} \in L\left(M_{2}\right)\right\}$
- Idea: ???
- Attach accepting states of M_{1} somehow to the start state of M_{2}.
- But we have to be careful, since we don't know when we're done with the part of the string in $L\left(M_{1}\right)$---the string could go through accepting states of M_{1} several times.

Closure under concatenation

- Theorem 5: FA-recognizable languages are closed under concatenation.
- Example:
$-\Sigma=\{0,1\}, L_{1}=\Sigma^{\star}, L_{2}=\{0\}\{0\}^{*}$ (just 0s, at least one).
$-L_{1} L_{2}=$ strings that end with a block of at least one 0
$-\mathrm{M}_{1}$:
$-M_{2}$:

- How to combine?
- We seem to need to "guess" when to shift to M_{2}.
- Leads to our next model, NFAs, which are FAs that can guess.

Closure under star

- Theorem 6: FA-recognizable languages are closed under star.
- Proof:
- Start with FA M.
- Get another $F A, M_{2}$, with $L\left(M_{2}\right)=L\left(M_{1}\right)^{*}$.
- Same problems as for concatenation---need guessing.
- We'll define NFAs next, then return to complete the proofs of Theorems 5 and 6.

Nondeterministic Finite Automata

Nondeterministic Finite Automata

- Generalize FAs by adding nondeterminism, allowing several alternative computations on the same input string.
- Ordinary deterministic FAs follow one path on each input.
- Two changes:
- Allow $\delta(q, a)$ to specify more than one successor state:

- Add ε-transitions, transitions made "for free", without "consuming" any input symbols.
- Formally, combine these changes:

Formal Definition of an NFA

- An NFA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where:
-Q is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: \mathrm{Q} \times \Sigma_{\varepsilon} \rightarrow \mathrm{P}(\mathrm{Q})$ is the transition function,

The arguments
The result is a set of states.
are a state and either an alphabet symbol or
غ. Σ_{ε} means $\Sigma \cup\{\varepsilon\}$.
$-q_{0} \in Q$, is the start state, and
$-\mathrm{F} \subseteq \mathrm{Q}$ is the set of accepting, or final states.

Formal Definition of an NFA

- An NFA is a 5 -tuple ($\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}$), where:
-Q is a finite set of states,
$-\Sigma$ is a finite set (alphabet) of input symbols,
$-\delta: Q \times \Sigma_{\varepsilon} \rightarrow P(Q)$ is the transition function,
$-q_{0} \in Q$, is the start state, and
$-F \subseteq Q$ is the set of accepting, or final states.
- How many states in $\mathrm{P}(\mathrm{Q})$?
$2^{1 \mathrm{IV}}$
- Example: $\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$

$$
P(Q)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}
$$

NFA Example 1

$\mathrm{Q}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\Sigma=\{0,1\}$
$\mathrm{q}_{\mathrm{o}}=\mathrm{a}$
$\mathrm{F}=\{\mathrm{c}\}$
δ :

	0	1	ε
a	$\{\mathrm{a}, \mathrm{b}\}$	$\{\mathrm{a}\}$	\varnothing
b	\varnothing	$\{\mathrm{c}\}$	\varnothing
c	\varnothing	\varnothing	\varnothing

NFA Example 2

Next time...

- NFAs and how they compute
- NFAs vs. FAs
- Closure of regular languages under languages operations, revisited
- Regular expressions
- Regular expressions denote FArecognizable languages.
- Reading: Sipser, Sections 1.2, 1.3

MIT OpenCourseWare
http://ocw.mit.edu

$6.045 \mathrm{~J} / 18.400 \mathrm{~J}$ Automata, Computability, and Complexity

Spring 2011

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

