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Today
• Finite Automata (FAs)

– Our third machine model, after circuits and decision trees.
• Designed to:

– Accept some strings of symbols.
– Recognize a language, which is the set of strings it accepts.

• FA takes as its input a string of any length.
– One machine for all lengths.
– Circuits and decision trees use a different machine for each length.

• Today’s topics:
– Finite Automata and the languages they recognize
– Examples
– Operations on languages
– Closure of FA languages under various operations
– Nondeterministic FAs

• Reading: Sipser, Section 1.1.
• Next: Sections 1.2, 1.3.



Finite Automata and the 
languages they recognize



Example 1
• An FA diagram, machine M

• Conventions:
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Start state Accept state

a b1

Transition from a to b on 
input symbol 1.           
Allow self-loops



Example 1

• Example computation:
– Input word w:    1   0   1   1   0   1   1   1   0
– States:            a   b   a   b   c   a   b   c   d   d

• We say that M accepts w, since w leads to d, an 
accepting state.
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In general…
• A FA M accepts a word w if w causes M to follow a 

path from the start state to an accept state.
• Some terminology and notation:

– Finite alphabet of symbols, usually called Σ.
– In Example 1 (and often), Σ = { 0,1 }.
– String (word) over Σ:  Finite sequence of symbols from Σ.
– Length of w, | w |
– ε, placeholder symbol for the empty string, | ε | = 0
– Σ*, the set of all finite strings of symbols in Σ
– Concatenation of strings w and x, written w ◦ x or w x.
– L(M), language recognized by M:                                       

{ w | w is accepted by M }.
– What is L( M ) for Example 1?



Example 1

• What is L( M ) for Example 1?
• { w ∈ { 0,1 }* | w contains 111 as a substring }
• Note:  Substring refers to consecutive symbols.
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Formal Definition of an FA
• An FA is a 5-tuple ( Q, Σ, δ, q0, F ), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σ → Q is the transition function,

– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

The arguments of δ
are a state and an 
alphabet symbol.

The result is a state.



Example 1
• What is the 5-tuple (Q, Σ, δ, q0, F)?
• Q = { a, b, c, d }
• Σ = { 0, 1 }
• δ is given by the state diagram, or 

alternatively, by a table:
• q0 = a
• F = { d }

0    1
a    a    b
b    a    c
c    a    d
d    d    d



Formal definition of computation
• Extend the definition of δ to input strings and states:

δ*: Q × Σ* → Q, state and string yield a state
δ*( q, w ) = state that is reached by starting at q and 
following w.

• Defined recursively:
δ*( q, ε ) = q
δ*( q, w a ) = δ( δ*( q, w ), a )

• Or iteratively, compute δ*( q, a1 a2 … ak) by: 
s : = q
for i = 1 to k do s := δ( s, ai )

string symbol



Formal definition of computation
• String w is accepted if δ*( q0, w ) ∈ F, that is, 

w leads from the start state to an accepting 
state.

• String w is rejected if it isn’t accepted.
• A language is any set of strings over some 

alphabet.
• L(M), language recognized by finite 

automaton M = { w | w is accepted by M}.
• A language is regular, or FA-recognizable, if 

it is recognized by some finite automaton.



Examples of Finite Automata



Example 2
• Design an FA M with L(M) = { w ∈ { 0,1 }* | w

contains 101 as a substring }.

• Failure from state b causes the machine to remain 
in state b.

1 0 1
a cb d

0

0 0,11



Example 3
• L = { w ∈ { 0,1 }* | w doesn’t contain either 00 or 

11 as a substring }.

• State d is a trap state = a nonaccepting state that 
you can’t leave.

• Sometimes we’ll omit some arrows; by convention, 
they go to a trap state.
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Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.
• E.g., ε, or 100111000011111, or any number of 0s.
• Initial 0s don’t matter, so start with:

• Then 1 also leads to an accepting state, but it should be a 
different one, to “remember” that the string ends in one 1.

0

a

0

a b
1



Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• Note: c isn’t a trap state---we can accept some extensions.

0

a b
1

• From b:
– 0 can return to a, which can 

represent either ε, or any string that 
is OK so far and ends with 0.

– 1 should go to a new nonaccepting 
state, meaning “the string ends with 
two 1s”. 0

a b
1

c

0

1



Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• From c:
– 1 can lead back to b, since future acceptance decisions are the 

same if the string so far ends with any odd number of 1s.
• Reinterpret b as meaning “ends with an odd number of 1s”.
• Reinterpret c as “ends with an even number of 1s”.

– 0 means we must reject the current string and all extensions.
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Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• Meanings of states (more precisely):
a:  Either ε, or contains no bad block (even block of 1s followed by 0) 

so far and ends with 0.
b:  No bad block so far, and ends with odd number of 1s.
c:  No bad block so far, and ends with even number of 1s.
d:  Contains a bad block.
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a b
1

c

0

1

1

d
0

0,1



Example 5
• L = EQ = { w | w contains an equal number of 0s 

and 1s }.
• No FA recognizes this language.
• Idea (not a proof):

– Machine must “remember” how many 0s and 1s it has 
seen, or at least the difference between these numbers.

– Since these numbers (and the difference) could be 
anything, there can’t be enough states to keep track.

– So the machine will sometimes get confused and give a 
wrong answer.

• We’ll turn this into an actual proof next week.



Language Operations



Language operations
• Operations that can be used to construct 

languages from other languages.
• Recall:  A language is any set of strings.
• Since languages are sets, we can use the usual 

set operations:
– Union, L1 ∪ L2
– Intersection, L1 ∩ L2
– Complement, Lc

– Set difference, L1 - L2

• We also have new operations defined especially 
for sets of strings:
– Concatenation,  L1 ◦ L2  or just L1 L2
– Star, L*



Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }

– Pick one string from each language and concatenate 
them.

• Example: 
Σ = { 0, 1 }, L1 = { 0, 00 }, L2 = { 01, 001 }
L1 ◦ L2 = {  001, 0001, 00001 }

• Notes:  
| L1 ◦ L2 | ≤ | L1 | × | L2 |, not necessarily equal.
L ◦ L does not mean { x x | x ∈ L }, but rather, { x y | x and 

y are both in L }.

strings



Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }

• Example: 
Σ = { 0, 1 }, L1 = { 0, 00 }, L2 = { 01, 001 }
L1 ◦ L2 = {  001, 0001, 00001 }
L2 ◦ L2 = { 0101, 01001, 00101, 001001 }

• Example:  ∅ ◦ L
{ x y | x ∈ ∅ and y ∈ L } = ∅

• Example:  { ε } ◦ L
{ x y | x ∈ { ε } and y ∈ L } = L



Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }
• Write L ◦ L as L2 , 

L ◦ L ◦ … ◦ L  as Ln, which is  { x1 x2 … xn | all x’s are in L }

• Example:  L = { 0, 11 }
L3 = { 000, 0011, 0110, 01111, 1100, 11011, 11110, 111111 }

• Example:  L = { 0, 00 }
L3 = { 000, 0000, 00000, 000000 }

• Boundary cases:  
L1 = L
Define L0 = { ε }, for every L.

• Implies that L0 Ln = { ε } Ln = Ln.
• Special case of general rule La Lb = La+b.

n of them



The Star Operation
• L* = { x | x = y1 y2 … yk for some k ≥ 0, 

where every y is in L }
= L0 ∪ L1 ∪ L2 ∪ …

• Note: ε is in L* for every L, since it’s in L0.
• Example:  What is ∅* ?

– Apply the definition:
∅* = ∅0 ∪ ∅1 ∪ ∅2 ∪ …

= { ε }.

This is { ε }, by the convention that L0 = { ε }.

The rest of these are just ∅.



The Star Operation
• L* = L0 ∪ L1 ∪ L2 ∪ …
• Example:  What is { a }* ? 

– Apply the definition:
{ a }* = { a }0 ∪ { a }1 ∪ { a }2 ∪ …

= { ε } ∪ { a } ∪ { a a }  ∪ …
= { ε, a, a a, a a a, … } 

– Abbreviate this to just a*.
– Note this is not just one string, but a set of 

strings---any number of a’s.



The Star Operation
• L* = L0 ∪ L1 ∪ L2 ∪ …
• Example:  What is Σ* ? 

– We’ve already defined this to be the set of all 
finite strings over Σ.

– But now it has a new formal definition:
Σ * = Σ0 ∪ Σ1 ∪ Σ2 ∪ …

= { ε } ∪ { strings of length 1 over Σ }                                                
∪ { strings of length 2 over Σ } 
∪ …

= { all finite strings over Σ }

– Consistent.



Summary:  Language Operations
• Set operations:  Union, intersection, 

complement, set difference
• New language operations:  Concatenation, 

star
• Regular operations:

– Of these six operations, we identify three as 
regular operations: union, concatenation, star.

– We’ll revisit these next time, when we define 
regular expressions.



Closure of regular (FA-
recognizable) languages under 

all six operations



Closure under operations
• The set of FA-recognizable languages is closed under all 

six operations (union, intersection, complement, set 
difference, concatenation, star).

• This means:  If we start with FA-recognizable languages 
and apply any of these operations, we get another FA-
recognizable language (for a different FA).

• Theorem 1: FA-recognizable languages are closed under 
complement.

• Proof:
– Start with a language L1 over alphabet Σ, recognized by some FA, 

M1.
– Produce another FA, M2, with L(M2) = Σ* - L(M1).
– Just interchange accepting and non-accepting states.



Closure under complement
• Theorem 1: FA-recognizable languages are 

closed under complement.
• Proof: Interchange accepting and non-accepting 

states.
• Example:  FA for { w | w does not contain 111 }

– Start with FA for { w | w contains 111 }:
0

1 1 1

0,1

0

0

a cb d



Closure under complement
• Theorem 1: FA-recognizable languages are 

closed under complement.
• Proof: Interchange accepting and non-accepting 

states.
• Example:  FA for { w | w does not contain 111 }

– Interchange accepting and non-accepting states:

1

0 0,1

a

0

0
dcb

11



Closure under intersection
• Theorem 2: FA-recognizable languages are 

closed under intersection.
• Proof:

– Start with FAs M1 and M2 for the same alphabet 
Σ.

– Get another FA, M3, with L(M3) = L(M1) ∩ L(M2).
– Idea:  Run M1 and M2 “in parallel” on the same 

input.  If both reach accepting states, accept.
– Example: 

• L(M1):  Contains substring 01.
• L(M2):  Odd number of 1s.
• L(M3):  Contains 01 and has an odd number of 1s.



Closure under intersection
• Example: 

M1:  Substring 01

M2:  Odd number of 1s

M3: 

10
a b c

1 0 0,1

1
d e
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0 0
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0
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Closure under intersection,  
general rule

• Assume:
– M1 = ( Q1, Σ, δ1, q01, F1 )
– M2 = ( Q2, Σ, δ2, q02, F2 )

• Define M3 = ( Q3, Σ, δ3, q03, F3 ), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)
– F3 = F1 × F2  = { (q1,q2) | q1 ∈ F1 and q2 ∈ F2 }



Closure under union
• Theorem 3: FA-recognizable languages are 

closed under union.
• Proof:

– Similar to intersection.
– Start with FAs M1 and M2 for the same alphabet Σ.
– Get another FA, M3, with L(M3) = L(M1) ∪ L(M2).
– Idea:  Run M1 and M2 “in parallel” on the same input.  If 

either reaches an accepting state, accept.
– Example: 

• L(M1):  Contains substring 01.
• L(M2):  Odd number of 1s.
• L(M3):  Contains 01 or has an odd number of 1s.



Closure under union
• Example: 

M1:  Substring 01

M2:  Odd number of 1s

M3: 1
�
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Closure under union,  general rule
• Assume:

– M1 = ( Q1, Σ, δ1, q01, F1 )
– M2 = ( Q2, Σ, δ2, q02, F2 )

• Define M3 = ( Q3, Σ, δ3, q03, F3 ), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)
– F3 = { (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }



Closure under set difference
• Theorem 4: FA-recognizable languages are 

closed under set difference.
• Proof:

– Similar proof to those for union and intersection.
– Alternatively, since L1 – L2 is the same as         

L1 ∩ (L2)c, we can just apply Theorems 2 and 3.



Closure under concatenation
• Theorem 5: FA-recognizable languages are 

closed under concatenation.
• Proof:

– Start with FAs M1 and M2 for the same alphabet Σ.
– Get another FA, M3, with L(M3) = L(M1) ◦ L(M2), which is 

{ x1 x2 | x1 ∈ L(M1) and x2 ∈ L(M2) }
– Idea: ??? 

• Attach accepting states of M1 somehow to the start state of M2. 
• But we have to be careful, since we don’t know when we’re 

done with the part of the string in L(M1)---the string could go 
through accepting states of M1 several times.



Closure under concatenation
• Theorem 5: FA-recognizable languages are closed under 

concatenation.
• Example:  

– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}* (just 0s, at least one).
– L1 L2 = strings that end with a block of at least one 0
– M1:

– M2:  

– How to combine?
– We seem to need to “guess” when to shift to M2.
– Leads to our next model, NFAs, which are FAs that can guess.

0, 1

1
0

0

trap

0,1

1



Closure under star
• Theorem 6: FA-recognizable languages are 

closed under star.
• Proof:

– Start with FA M1.
– Get another FA, M2, with L(M2) = L(M1)*.
– Same problems as for concatenation---need 

guessing.
– …
– We’ll define NFAs next, then return to complete 

the proofs of Theorems 5 and 6.



Nondeterministic Finite Automata 



Nondeterministic Finite Automata
• Generalize FAs by adding nondeterminism, allowing 

several alternative computations on the same input string.
• Ordinary deterministic FAs follow one path on each input.
• Two changes:

– Allow δ(q, a) to specify more than one successor state:

– Add ε-transitions, transitions made “for free”, without “consuming”
any input symbols.

• Formally, combine these changes:

q

a

a

q1 q2
ε



Formal Definition of an NFA
• An NFA is a 5-tuple ( Q, Σ, δ, q0, F ), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,

– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

The arguments 
are a state and either 
an alphabet symbol or 
ε.  Σε means Σ ∪ {ε }.

The result is a set of states.



Formal Definition of an NFA
• An NFA is a 5-tuple ( Q, Σ, δ, q0, F ), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,
– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

• How many states in P(Q)?
2|Q|

• Example:  Q = { a, b, c }
P(Q) = { ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }



NFA Example 1

Q = { a, b, c }
Σ = { 0, 1 }
q0 = a
F = { c }
δ:

a b

0,1

c
0 1

0      1      ε
a     {a,b}  {a}    ∅
b      ∅ {c}    ∅
c      ∅ ∅ ∅



NFA Example 2

b c0,1 d
0 1

e f g
1 0

a

ε

ε

0      1      ε
a       {a}    {a}    {b,c}
b       {c}     ∅ ∅
c        ∅ {d}    ∅
d        ∅ ∅ ∅
e        ∅ {f}     ∅
f        {g}     ∅ ∅
g        ∅ ∅ ∅



Next time…
• NFAs and how they compute
• NFAs vs. FAs
• Closure of regular languages under 

languages operations, revisited
• Regular expressions
• Regular expressions denote FA-

recognizable languages.
• Reading: Sipser, Sections 1.2, 1.3
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