
6.045: Automata, Computability, and
Complexity

Or, Great Ideas in Theoretical
Computer Science

Spring, 2010

Class 3
Nancy Lynch

Today
• Finite Automata (FAs)

– Our third machine model, after circuits and decision trees.
• Designed to:

– Accept some strings of symbols.
– Recognize a language, which is the set of strings it accepts.

• FA takes as its input a string of any length.
– One machine for all lengths.
– Circuits and decision trees use a different machine for each length.

• Today’s topics:
– Finite Automata and the languages they recognize
– Examples
– Operations on languages
– Closure of FA languages under various operations
– Nondeterministic FAs

• Reading: Sipser, Section 1.1.
• Next: Sections 1.2, 1.3.

Finite Automata and the
languages they recognize

Example 1
• An FA diagram, machine M

• Conventions:

0

1 1 1

0,1

0

0

a cb d

Start state Accept state

a b1

Transition from a to b on
input symbol 1.
Allow self-loops

Example 1

• Example computation:
– Input word w: 1 0 1 1 0 1 1 1 0
– States: a b a b c a b c d d

• We say that M accepts w, since w leads to d, an
accepting state.

0

1 1 1

0,1

0

0

a cb d

In general…
• A FA M accepts a word w if w causes M to follow a

path from the start state to an accept state.
• Some terminology and notation:

– Finite alphabet of symbols, usually called Σ.
– In Example 1 (and often), Σ = { 0,1 }.
– String (word) over Σ: Finite sequence of symbols from Σ.
– Length of w, | w |
– ε, placeholder symbol for the empty string, | ε | = 0
– Σ*, the set of all finite strings of symbols in Σ
– Concatenation of strings w and x, written w ◦ x or w x.
– L(M), language recognized by M:

{ w | w is accepted by M }.
– What is L(M) for Example 1?

Example 1

• What is L(M) for Example 1?
• { w ∈ { 0,1 }* | w contains 111 as a substring }
• Note: Substring refers to consecutive symbols.

0

1 1 1

0,1

0

0

a cb d

Formal Definition of an FA
• An FA is a 5-tuple (Q, Σ, δ, q0, F), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σ → Q is the transition function,

– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

The arguments of δ
are a state and an
alphabet symbol.

The result is a state.

Example 1
• What is the 5-tuple (Q, Σ, δ, q0, F)?
• Q = { a, b, c, d }
• Σ = { 0, 1 }
• δ is given by the state diagram, or

alternatively, by a table:
• q0 = a
• F = { d }

0 1
a a b
b a c
c a d
d d d

Formal definition of computation
• Extend the definition of δ to input strings and states:

δ*: Q × Σ* → Q, state and string yield a state
δ*(q, w) = state that is reached by starting at q and
following w.

• Defined recursively:
δ*(q, ε) = q
δ*(q, w a) = δ(δ*(q, w), a)

• Or iteratively, compute δ*(q, a1 a2 … ak) by:
s : = q
for i = 1 to k do s := δ(s, ai)

string symbol

Formal definition of computation
• String w is accepted if δ*(q0, w) ∈ F, that is,

w leads from the start state to an accepting
state.

• String w is rejected if it isn’t accepted.
• A language is any set of strings over some

alphabet.
• L(M), language recognized by finite

automaton M = { w | w is accepted by M}.
• A language is regular, or FA-recognizable, if

it is recognized by some finite automaton.

Examples of Finite Automata

Example 2
• Design an FA M with L(M) = { w ∈ { 0,1 }* | w

contains 101 as a substring }.

• Failure from state b causes the machine to remain
in state b.

1 0 1
a cb d

0

0 0,11

Example 3
• L = { w ∈ { 0,1 }* | w doesn’t contain either 00 or

11 as a substring }.

• State d is a trap state = a nonaccepting state that
you can’t leave.

• Sometimes we’ll omit some arrows; by convention,
they go to a trap state.

d

0

0,1

0
b

a

c
1

0 1

1

Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.
• E.g., ε, or 100111000011111, or any number of 0s.
• Initial 0s don’t matter, so start with:

• Then 1 also leads to an accepting state, but it should be a
different one, to “remember” that the string ends in one 1.

0

a

0

a b
1

Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• Note: c isn’t a trap state---we can accept some extensions.

0

a b
1

• From b:
– 0 can return to a, which can

represent either ε, or any string that
is OK so far and ends with 0.

– 1 should go to a new nonaccepting
state, meaning “the string ends with
two 1s”. 0

a b
1

c

0

1

Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• From c:
– 1 can lead back to b, since future acceptance decisions are the

same if the string so far ends with any odd number of 1s.
• Reinterpret b as meaning “ends with an odd number of 1s”.
• Reinterpret c as “ends with an even number of 1s”.

– 0 means we must reject the current string and all extensions.

0

a b
1

c

0

1

1

d
0

0,1

Trap state

Example 4
• L = { w | all nonempty blocks of 1s in w have odd length }.

• Meanings of states (more precisely):
a: Either ε, or contains no bad block (even block of 1s followed by 0)

so far and ends with 0.
b: No bad block so far, and ends with odd number of 1s.
c: No bad block so far, and ends with even number of 1s.
d: Contains a bad block.

0

a b
1

c

0

1

1

d
0

0,1

Example 5
• L = EQ = { w | w contains an equal number of 0s

and 1s }.
• No FA recognizes this language.
• Idea (not a proof):

– Machine must “remember” how many 0s and 1s it has
seen, or at least the difference between these numbers.

– Since these numbers (and the difference) could be
anything, there can’t be enough states to keep track.

– So the machine will sometimes get confused and give a
wrong answer.

• We’ll turn this into an actual proof next week.

Language Operations

Language operations
• Operations that can be used to construct

languages from other languages.
• Recall: A language is any set of strings.
• Since languages are sets, we can use the usual

set operations:
– Union, L1 ∪ L2
– Intersection, L1 ∩ L2
– Complement, Lc

– Set difference, L1 - L2

• We also have new operations defined especially
for sets of strings:
– Concatenation, L1 ◦ L2 or just L1 L2
– Star, L*

Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }

– Pick one string from each language and concatenate
them.

• Example:
Σ = { 0, 1 }, L1 = { 0, 00 }, L2 = { 01, 001 }
L1 ◦ L2 = { 001, 0001, 00001 }

• Notes:
| L1 ◦ L2 | ≤ | L1 | × | L2 |, not necessarily equal.
L ◦ L does not mean { x x | x ∈ L }, but rather, { x y | x and

y are both in L }.

strings

Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }

• Example:
Σ = { 0, 1 }, L1 = { 0, 00 }, L2 = { 01, 001 }
L1 ◦ L2 = { 001, 0001, 00001 }
L2 ◦ L2 = { 0101, 01001, 00101, 001001 }

• Example: ∅ ◦ L
{ x y | x ∈ ∅ and y ∈ L } = ∅

• Example: { ε } ◦ L
{ x y | x ∈ { ε } and y ∈ L } = L

Concatenation
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }
• Write L ◦ L as L2 ,

L ◦ L ◦ … ◦ L as Ln, which is { x1 x2 … xn | all x’s are in L }

• Example: L = { 0, 11 }
L3 = { 000, 0011, 0110, 01111, 1100, 11011, 11110, 111111 }

• Example: L = { 0, 00 }
L3 = { 000, 0000, 00000, 000000 }

• Boundary cases:
L1 = L
Define L0 = { ε }, for every L.

• Implies that L0 Ln = { ε } Ln = Ln.
• Special case of general rule La Lb = La+b.

n of them

The Star Operation
• L* = { x | x = y1 y2 … yk for some k ≥ 0,

where every y is in L }
= L0 ∪ L1 ∪ L2 ∪ …

• Note: ε is in L* for every L, since it’s in L0.
• Example: What is ∅* ?

– Apply the definition:
∅* = ∅0 ∪ ∅1 ∪ ∅2 ∪ …

= { ε }.

This is { ε }, by the convention that L0 = { ε }.

The rest of these are just ∅.

The Star Operation
• L* = L0 ∪ L1 ∪ L2 ∪ …
• Example: What is { a }* ?

– Apply the definition:
{ a }* = { a }0 ∪ { a }1 ∪ { a }2 ∪ …

= { ε } ∪ { a } ∪ { a a } ∪ …
= { ε, a, a a, a a a, … }

– Abbreviate this to just a*.
– Note this is not just one string, but a set of

strings---any number of a’s.

The Star Operation
• L* = L0 ∪ L1 ∪ L2 ∪ …
• Example: What is Σ* ?

– We’ve already defined this to be the set of all
finite strings over Σ.

– But now it has a new formal definition:
Σ * = Σ0 ∪ Σ1 ∪ Σ2 ∪ …

= { ε } ∪ { strings of length 1 over Σ }
∪ { strings of length 2 over Σ }
∪ …

= { all finite strings over Σ }

– Consistent.

Summary: Language Operations
• Set operations: Union, intersection,

complement, set difference
• New language operations: Concatenation,

star
• Regular operations:

– Of these six operations, we identify three as
regular operations: union, concatenation, star.

– We’ll revisit these next time, when we define
regular expressions.

Closure of regular (FA-
recognizable) languages under

all six operations

Closure under operations
• The set of FA-recognizable languages is closed under all

six operations (union, intersection, complement, set
difference, concatenation, star).

• This means: If we start with FA-recognizable languages
and apply any of these operations, we get another FA-
recognizable language (for a different FA).

• Theorem 1: FA-recognizable languages are closed under
complement.

• Proof:
– Start with a language L1 over alphabet Σ, recognized by some FA,

M1.
– Produce another FA, M2, with L(M2) = Σ* - L(M1).
– Just interchange accepting and non-accepting states.

Closure under complement
• Theorem 1: FA-recognizable languages are

closed under complement.
• Proof: Interchange accepting and non-accepting

states.
• Example: FA for { w | w does not contain 111 }

– Start with FA for { w | w contains 111 }:
0

1 1 1

0,1

0

0

a cb d

Closure under complement
• Theorem 1: FA-recognizable languages are

closed under complement.
• Proof: Interchange accepting and non-accepting

states.
• Example: FA for { w | w does not contain 111 }

– Interchange accepting and non-accepting states:

1

0 0,1

a

0

0
dcb

11

Closure under intersection
• Theorem 2: FA-recognizable languages are

closed under intersection.
• Proof:

– Start with FAs M1 and M2 for the same alphabet
Σ.

– Get another FA, M3, with L(M3) = L(M1) ∩ L(M2).
– Idea: Run M1 and M2 “in parallel” on the same

input. If both reach accepting states, accept.
– Example:

• L(M1): Contains substring 01.
• L(M2): Odd number of 1s.
• L(M3): Contains 01 and has an odd number of 1s.

Closure under intersection
• Example:

M1: Substring 01

M2: Odd number of 1s

M3:

10
a b c

1 0 0,1

1
d e

1

0 0

11
1

1
0

0

0

ad bd cd

ae be ce

0
0

0

1 1

Closure under intersection,
general rule

• Assume:
– M1 = (Q1, Σ, δ1, q01, F1)
– M2 = (Q2, Σ, δ2, q02, F2)

• Define M3 = (Q3, Σ, δ3, q03, F3), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)
– F3 = F1 × F2 = { (q1,q2) | q1 ∈ F1 and q2 ∈ F2 }

Closure under union
• Theorem 3: FA-recognizable languages are

closed under union.
• Proof:

– Similar to intersection.
– Start with FAs M1 and M2 for the same alphabet Σ.
– Get another FA, M3, with L(M3) = L(M1) ∪ L(M2).
– Idea: Run M1 and M2 “in parallel” on the same input. If

either reaches an accepting state, accept.
– Example:

• L(M1): Contains substring 01.
• L(M2): Odd number of 1s.
• L(M3): Contains 01 or has an odd number of 1s.

Closure under union
• Example:

M1: Substring 01

M2: Odd number of 1s

M3: 1
�

10
a b c

1 0 0,1

1
d e

1

1 1

0 0

11
1

1
0

0

0

ad bd cd

ae be ce

0
0

0

Closure under union, general rule
• Assume:

– M1 = (Q1, Σ, δ1, q01, F1)
– M2 = (Q2, Σ, δ2, q02, F2)

• Define M3 = (Q3, Σ, δ3, q03, F3), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)
– F3 = { (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }

Closure under set difference
• Theorem 4: FA-recognizable languages are

closed under set difference.
• Proof:

– Similar proof to those for union and intersection.
– Alternatively, since L1 – L2 is the same as

L1 ∩ (L2)c, we can just apply Theorems 2 and 3.

Closure under concatenation
• Theorem 5: FA-recognizable languages are

closed under concatenation.
• Proof:

– Start with FAs M1 and M2 for the same alphabet Σ.
– Get another FA, M3, with L(M3) = L(M1) ◦ L(M2), which is

{ x1 x2 | x1 ∈ L(M1) and x2 ∈ L(M2) }
– Idea: ???

• Attach accepting states of M1 somehow to the start state of M2.
• But we have to be careful, since we don’t know when we’re

done with the part of the string in L(M1)---the string could go
through accepting states of M1 several times.

Closure under concatenation
• Theorem 5: FA-recognizable languages are closed under

concatenation.
• Example:

– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}* (just 0s, at least one).
– L1 L2 = strings that end with a block of at least one 0
– M1:

– M2:

– How to combine?
– We seem to need to “guess” when to shift to M2.
– Leads to our next model, NFAs, which are FAs that can guess.

0, 1

1
0

0

trap

0,1

1

Closure under star
• Theorem 6: FA-recognizable languages are

closed under star.
• Proof:

– Start with FA M1.
– Get another FA, M2, with L(M2) = L(M1)*.
– Same problems as for concatenation---need

guessing.
– …
– We’ll define NFAs next, then return to complete

the proofs of Theorems 5 and 6.

Nondeterministic Finite Automata

Nondeterministic Finite Automata
• Generalize FAs by adding nondeterminism, allowing

several alternative computations on the same input string.
• Ordinary deterministic FAs follow one path on each input.
• Two changes:

– Allow δ(q, a) to specify more than one successor state:

– Add ε-transitions, transitions made “for free”, without “consuming”
any input symbols.

• Formally, combine these changes:

q

a

a

q1 q2
ε

Formal Definition of an NFA
• An NFA is a 5-tuple (Q, Σ, δ, q0, F), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,

– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

The arguments
are a state and either
an alphabet symbol or
ε. Σε means Σ ∪ {ε }.

The result is a set of states.

Formal Definition of an NFA
• An NFA is a 5-tuple (Q, Σ, δ, q0, F), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,
– q0 ∈ Q, is the start state, and
– F ⊆ Q is the set of accepting, or final states.

• How many states in P(Q)?
2|Q|

• Example: Q = { a, b, c }
P(Q) = { ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

NFA Example 1

Q = { a, b, c }
Σ = { 0, 1 }
q0 = a
F = { c }
δ:

a b

0,1

c
0 1

0 1 ε
a {a,b} {a} ∅
b ∅ {c} ∅
c ∅ ∅ ∅

NFA Example 2

b c0,1 d
0 1

e f g
1 0

a

ε

ε

0 1 ε
a {a} {a} {b,c}
b {c} ∅ ∅
c ∅ {d} ∅
d ∅ ∅ ∅
e ∅ {f} ∅
f {g} ∅ ∅
g ∅ ∅ ∅

Next time…
• NFAs and how they compute
• NFAs vs. FAs
• Closure of regular languages under

languages operations, revisited
• Regular expressions
• Regular expressions denote FA-

recognizable languages.
• Reading: Sipser, Sections 1.2, 1.3

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Finite Automata and the languages they recognize�
	Example 1
	Example 1
	In general…
	Example 1
	Formal Definition of an FA
	Example 1
	Formal definition of computation
	Formal definition of computation
	Examples of Finite Automata�
	Example 2
	Example 3
	Example 4
	Example 4
	Example 4
	Example 4
	Example 5
	Language Operations�
	Language operations
	Concatenation
	Concatenation
	Concatenation
	The Star Operation
	The Star Operation
	The Star Operation
	Summary: Language Operations
	Closure of regular (FA-recognizable) languages under all six operations
	Closure under operations
	Closure under complement
	Closure under complement
	Closure under intersection
	Closure under intersection
	Closure under intersection, general rule
	Closure under union
	Closure under union
	Closure under union, general rule
	Closure under set difference
	Closure under concatenation
	Closure under concatenation
	Closure under star
	Nondeterministic Finite Automata
	Nondeterministic Finite Automata
	Formal Definition of an NFA
	Formal Definition of an NFA
	NFA Example 1
	NFA Example 2
	Next time…

