
Design and Analysis of Algorithms March 15, 2012

Massachusetts Institute of Technology 6.046J/18.410J

Profs. Dana Moshkovitz and Bruce Tidor Handout 13

Problem Set 4 Solutions

This problem set is due at 9:00pm on Wednesday, March 14, 2012.

Problem 4-1. Word-Search: Pattern Matching Revisited

In recitation we covered an O(n lgn) FFT-based algorithm for finding the offset in the text that

gives the best match score between a pattern string and a target text. For this problem, we are

interested in finding the first exact occurrence of the pattern in the text. Let t = t1t2 . . . tn be a target

text and p = p1p2 . . . pm a pattern, both over alphabet Σ = {0, 1} with m ≤ n. Identifying the first

exact occurrence of the pattern in the text amounts to finding the smallest j ∈ {1, 2, . . . , n−m+1}
such that for 1 ≤ i ≤ m, it holds that tj+i−1 = pi.

In this problem we will work w

Z
ith the word RAM model, where we can store each integer in a

single word (or “by

Z
te”) of computer memory. The number of bits that can be stored in a single

word is ⌈lg n⌉. So, arithmetic operations on words or O(lg n)-bit numbers take O(1) time. Finally,

with this model comparing two n-bit numbers takes O(n) time.

For this problem you can assume that you are provided with a black-box prime number generator,

and that it takes O(1) time to sample O(lgK)-bit primes, for K polynomial in n. Also, you can

assume that π(k) ∼ k , where π(k) be the number of distinct primes less than k.
ln k

(a) Define fp : {0, 1}m → as fp(X) := g(X) mod p, where p is a prime and g :
{0, 1}m → is a function that converts an m-bit binary string to a corresponding

base 2 integer. Note that if X is equal to Y then fp(X) = fp(Y). However, if X differs

from Y then it can still be the case that fp(X) = fp(Y). We will refer to cases where

the results of evaluating the function on two different string inputs are equal as false

positives.

Take the set P = {p1, p2 . . . pt}, where pi are all primes less than some large integer

K. Suppose we choose a prime p uniformly at random from the set P and take m-bit

strings X and Y such that X = Y . Prove that we can bound the probability of a false

positive as follows:

m
P (fp(X) = fp(Y)) ≤

t

Hint: Consider the prime factorization of |g(X) − g(Y)|. Notice that the number of

prime factors is at most m.

Solution:

A false positive happens when m-bit strings X = Y but fp(X) = fp(Y). This implies

that the binary integers g(X) and g(Y) are the same modulo p, g(X) − g(Y) ≡ 0

6

6

2 Handout 13: Problem Set 4 Solutions

mod p. This will happen if and only if p is a prime factor of g(X)− g(Y). Thus, we

should count the number of distinct prime factors of g(X)−g(Y). Let g(X)−g(Y) =
q1q2 . . . qc where qi are its (not necessarily distinct) prime factors. Clearly, qi ≥ 2,

since 2 is the smallest prime. Thus, g(X) − g(Y) ≥ 2c. Since g(X), g(Y) ≤ 2m,

c < m. Hence, g(X) − g(Y) can have at most m prime factors, which is also the

maximum number of distinct prime factors it can have. When we sample a random

prime from the set P = p1, p2, . . . pt, the probability of us finding a prime factor of

g(X)− g(Y) and obtaining a false positive is at most:

m
P (fp(X) = fp(Y)) <

t

Note that the above bound is very loose, we did not even use the distinctness of the

prime factors, we can achieve a slightly better bound if we take that into consideration.

Suppose g(X)−g(Y) = qs11 qs22 . . . qscc . Where q1, q2, . . . are distinct. We have g(X)−
g(Y) > q1q2 . . . qc > 2 × 3 × 4 × . . . × c = c!. Hence the bound on c is: c! < 2m.

Using Sterling’s approximation, log(c!) = Θ(c log c), so we have c log c < Θ(m), this

implies c = O(m/ log(m)), because then c log c = m
m
(logm − log logm) = m.

log

Using this upperbound, the probability of a false positive is:

m
P (fp(X) = fp(Y)) <

t logm

An even tighter bound is possible, however, they do not improve the asymptotic run-

ning time of our algorithm in the subsequent parts.

(b) Let X(j) be a length-m substring of the target text that starts at position j, for a given

j ∈ {1, 2, . . . , n − m + 1}. Design a randomized algorithm that given fp(Y) and

fp(X(j)) determines if there is a match between the pattern and the target text for a

given offset j ∈ {1, 2, . . . , n−m+ 1}.

Solution:

Recall that a Monte Carlo algorithm is guaranteed to terminate quickly on any input,

however it has a probability of returning the wrong result. Whereas a Las Vegas

algorithm is guaranteed to be correct, but only terminates in some expected time, ie.

in some cases it can take a long time. For this problem, we will present both types of

algorithms.

Monte Carlo version:

If: fp(Y) = fp(X(j)), return “A match”

Else: return “Not a match”

Analysis: Notice that when fp(Y) = fp(X(j)), X = Y , so when our algorithm yields

a negative result, it is always correct. If our algorithm yields a positive result, as we

have concluded in part (a), the probability that it is a false positive is at most m/t.

6 6

Handout 13: Problem Set 4 Solutions 3

Thus, the overall error probability of our algorithm is at most m/t. The algorithm

only compares two numbers fp(Y) and fp(X(j)), which are both at most p− 1. If we

can bound p to be poly(n,m), then it only takes O(logn) bits to represent both fp(Y)
and fp(X(j)), and comparing them would take O(1) time in our model. Hence we

have a Monte Carlo algorithm that runs in O(1) time with an error probability of at

most m/t.

Las Vegas version:

If: fp(Y) = fp(X(j)), check the strings g(X(j)) and g(Y), if they are equal, return

“A match”

Else: return “Not a match”

Analysis: The difference between this algorithm and the previous one is that when

the finger prints fp(Y), fp(X(j)) are the same, we must make sure the strings g(Y)
and g(X(j)) are actually the same. There is no other way to guarantee this other than

to check them directly. Since g(Y) and g(X(j)) are m-bit numbers, this takes O(m)
time.

If g(Y) and g(X(j)) are actually the same, any algorithm must take O(m) to verify

this with 100% certainty (since we need to at least look at all the bits). So in this sense,

our randomized algorithm isn’t doing any worse.

If g(Y) and g(X(j)) are not the same, from part (a), we know that the probability

of a false positive is m/t, which means that our algorithm will compare two m-bit

strings in O(m) time but eventually conclude that they are not the same. Thus, the

total expected running time when g(Y) = g(X(j)) is O(1+m2/t). This will be O(1)
if we let K be, for example, Θ(m3), in which case, by the prime number theorem,

t = Θ(m3/ log(m)). Notice that fp(Y) and fp(X(j)) are still O(logn) in this case,

so comparing them still takes O(1) time.

Thus, this is an algorithm that runs in expected O(1) time, and always outputs the cor-

rect answer. It turns out that the Las Vegas version is better suited for the subsequent

parts.

(c) Design a formula that given g(X(j)) computes g(X(j+1)), where X(j) is a length-m
substring of the target text that starts at position j, for a given j ∈ {1, 2, . . . , n−m+1}.

Use it to compute fp(X(j + 1)) from fp(X(j)).

Note that the formula should depend on X , j, and m.

Solution: We regard g(X(j)) as an m-bit binary string with the left most bit being

the most significant, ie. g(X(j)) = 2m−1Xj+2m−2Xj+1+. . . 20Xj+m−1. g(X(j+1))
is basically g(X(j)) shifted right by 1 digit, discarding the original most significant

bit Xj in the process, while adding a new least significant bit Xj+m. Hence we have

the following relation between g(X(j)) and g(X(j + 1)):

g(X(j + 1)) = 2(g(X(j))− 2m−1Xj) +Xj+m

6

4 Handout 13: Problem Set 4 Solutions

so,

fp(X(j + 1)) = 2(fp(X(j))− 2m−1Xj) +Xj+m mod p

We only need to compute 2m−1 mod p once and save it for all future uses, subtracting

this constant takes O(1) time in our model as long as p is poly(n,m). Multiplying by

2 is equivalent to adding two log p bit numbers, which can be done in O(1) time.

Finally, adding Xj+m clearly takes constant time. Thus it takes O(1) time to compute

fp(X(j + 1)) from fp(X(j)).

(d) Suppose that X(j) and Y differ at every string position. Give the best upper bound

you can on the expected number of positions j such that fp(X(j)) = fp(Y), where

j ∈ {1, 2, . . . , n−m+ 1}.

Solution:

Let Ck be the indicator variable that fp(X(k)) = fp(Y). Then, the total number of

false positives FP for all the positions is:

n−m+1

E[FP] = E[
∑

Ci]
i=j

By linearity of expectation, this is equal to:

n−m+1

E[FP] =
∑

E[Ci]
i=j

Since we are told that g(X(j)) = g(Y) for all j, using the result of part (a), E[Ci] ≤
m/t for every i. Hence,

m nm
E[FP] = (n−m+ 1) = O()

t t

(e) Using parts above, design a randomized algorithm that determines if there is a match

between a pattern and a target text in O(n+m) expected running time. The algorithm

should always return the correct answer.

Solution: We will determine K (the upper bound on p) at the end, for now we will

treat it as a variable. Our algorithm works as follows:

1. sample a random prime from the range 1 to K. This can be accomplished using

either the blackbox described in the introduction of the problem in O(1) time. Or we

can do it ourselves as follows:

6

Handout 13: Problem Set 4 Solutions 5

First we generate a random number from 1 to K, not necessarily prime, this should

take O(1) time in our model if K is poly(n,m). Typically, pseudo random numbers

are generated with “seeds” using modular arithmetic, but these can all be done in

O(1) time. We note here that deterministic primality testing algorithms exist that run

in polylog(n) time. That is to say, given any number less than n, we can determine

whether it is prime or composite in polylog(n) time. Thus, to pick a random prime

number from the set, we random sample a number, use the deterministic primality test-

ing algorithm, and repeat until we obtain a prime number. From the prime density the-

orem, the probability of us finding a prime number is at least π(K)/K = 1/ log(K).
So we need to try expected O(log(K)) times before we actually find a prime number.

This brings our total runtime to log(K)× polylog(K) = polylog(K).

2. Compute fp(Y) and fp(X(1)). Both of them are m-bit numbers, arithmetic opera-

tions will take O(m) time.

3. Using fp(X(1)), compute all fp(X(j)) using the formula from part (c). We argued

that each additional value only takes O(1) time to compute, and there are O(n−m+
1) = O(n) of them in total, so this step takes O(n).

4. Compare fp(Y) to each of fp(X(j)) computed above, using the Las Vegas ver-

sion of the algorithm in part (b). Notice that the algorithm terminates as soon as we

encounter the first exact match. Thus, evevn if the original text contains many exact

matches, we will spend at most O(m) time on a position where g(X(j)) = g(Y). For

all other cases, we may then assume g(X(j)) = g(Y). We can then use the result

from part (d). The total work to check is O(n)+E[FP]×O(m). Since for every false
2

positive, we need to do O(m) work. This gives us a run time of O(n+ nm
t
).

Correctness: It is quite clear that the result of the algorithm is always correct, since

we used the Las Vegas version of the algorithm in part (b). Whenever the algorithm

returns a match at position k, we know that it is indeed a match because we checked

the m-bit strings directly. Likewise, whenever the algorithm reports no match, it is also

guaranteed to be correct. Thus, the first instance of a positive result is the position of

the first exact match.
2

Run time analysis: The total runtime of the algorithm is O(polylog(n)+m+n+ nm
t
)

2

O(m+ n + nm log(K)
or). We want to make the term

K
O(nm2 log(K)/K) small. For

example, we can pick K = Ω(nm2 log(nm2)), so that O(nm2 log(K)/K) = O(1),
and hence arriving at a O(n+m) algorithm. In fact, we can make K arbitrarily large,

as long as K is poly(n,m), so that operations on log(K) bit numbers can be done in

O(1) time.

(f) Provide a bound for the probability that the running time is more than 100 times the

expected running time.

Solution:

Let T be the random variable that describes the running time of the algorithm. By

Markov’s inequality, we have

6

6 Handout 13: Problem Set 4 Solutions

E[T] 1
Pr(T ≥ 100E[T]) ≤ =

100E[T] 100

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

